

PDF Reference Manual April 16, 1996

March 1, 1996

Tim Bienz, Richard Cohn, and James R. Meehan
Adobe Systems Incorporated

Adobe Systems Incorporated

Portable Document Format
Reference Manual

Version 1.1

PDF Reference Manual April 16, 1996

Copyright



 1993, 1996. Adobe Systems Incorporated. All rights reserved. Patents Pending.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written consent of the publisher. Any software referred to herein
is furnished under license and may only be used or copied in accordance with the terms of such license. Printed in the United States
of America.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a
commitment by Adobe Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or
inaccuracies, makes no warranty of any kind (express, implied or statutory) with respect to this publication, and expressly disclaims
any and all warranties of merchantability, fitness for particular purposes and noninfringement of third party rights.

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name PostScript in the text are references to
the PostScript language as defined by Adobe Systems Incorporated unless otherwise stated. The name PostScript also is used as a
product trademark for Adobe Systems’ implementation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers, files, and driver programs
(respectively) which are written in or support the PostScript language. The sentences in this book that use “PostScript language” as
an adjective phrase are so constructed to reinforce that the name refers to the standard language definition as set forth by Adobe
Systems Incorporated.

Adobe, Acrobat, the Acrobat logo, Adobe Garamond, Adobe Illustrator , Carta, Distiller, FrameMaker, Minion, Photoshop, the
Photoshop logo, Poetica, PostScript, and the PostScript logo are registered trademarks of Adobe Systems Incorporated. TrueType and
QuickDraw are trademarks and Apple, Macintosh, and Mac are registered trademarks of Apple Computer, Inc. ITC Stone and ITC
Zapf Dingbats are registered trademarks of International Typeface Corporation. Helvetica and Times are registered trademarks of
Linotype–Hell AG and/or its subsidiaries. Microsoft and Windows are registered trademarks of Microsoft Corporation. SelectSet is
a trademark of Agfa Division, Miles, Inc. Sun is a trademark of Sun Microsystems, Inc. SPARCstation is a registered trademark of
SPARC International, Inc., licensed exclusively to Sun Microsystems, Inc. and is based upon an architecture developed by Sun
Microsystems, Inc. NeXT is a trademark of NeXT Computer, Inc. UNIX is a registered trademark in the United States and other
countries, licensed exclusively through X/Open Company, Ltd. All other brand or product names are the trademarks or registered
trademarks of their respective holders.

Library of Congress Cataloging-in-Publication Data

Portable document format reference manual / Adobe Systems Incorporated.
 p. cm.
Includes bibliographical references (p. 207) and index.
ISBN 0–201–62628–4
1. File organization (Computer science) 2. PostScript (Computer program language)
3. Text processing (Computer science) I. Adobe Systems.
QA76.9.F5P67 199393–8046
005.74—dc20CIP

1 2 3 4 5 6 7 8 9–MA–9796959493

First Printing, June 1993

PDF Reference Manual April 16, 1996 Contents

iii

Contents

Contents

iii

Figures

ix

Tables

xi

Examples

xiii

Chapter 1: Introduction

1

1.1 About this book 1
1.2 Introduction to the Second Edition—PDF 1.1 3
1.3 Conventions used in this book 5
1.4 A note on syntax 5
1.5 Copyrights and permissions to use PDF 6

Section I: Portable Document Format

9

Chapter 2: Overview

11

2.1 What is the Portable Document Format? 11
2.2 Using PDF 12
2.3 General properties 14
2.4 PDF and the PostScript language 18
2.5 Understanding PDF 20

PDF Reference Manual April 16, 1996 Contents

iv Contents

Chapter 3: Coordinate Systems

21

3.1 Device space 21
3.2 User space 22
3.3 Text space 23
3.4 Character space 24
3.5 Image space 24
3.6 Form space 24
3.7 Relationships among coordinate systems 24
3.8 Transformations between coordinate systems 25
3.9 Transformation matrices 27

Chapter 4: Objects

31

4.1 Introduction 31
4.2 Booleans 31
4.3 Numbers 31
4.4 Strings 32
4.5 Names 35
4.6 Arrays 35
4.7 Dictionaries 35
4.8 Streams 36
4.9 The null object 47

4.10 Indirect objects 48
4.11 Object references 48

Chapter 5: File Structure

51

5.1 Introduction 51
5.2 Header 53
5.3 Body 53
5.4 Cross-reference table 53
5.5 Trailer 56
5.6 Incremental update 58
5.7 Encryption 60

PDF Reference Manual April 16, 1996 Contents

 v

Chapter 6: Document Structure

61

6.1 Introduction 61
6.2 Catalog 63
6.3 Pages tree 65
6.4 Page objects 67
6.5 Thumbnails 74
6.6 Annotations 74
6.7 Outline tree 93
6.8 Resources 96
6.9 Info dictionary 129

6.10 Articles 131
6.11 File ID 133
6.12 Encryption dictionary 134

Chapter 7: Page Descriptions

137

7.1 Overview 137
7.2 Graphics state 138
7.3 Graphics state operators 147
7.4 Color operators 148
7.5 Path operators 150
7.6 Text state 156
7.7 Text operators 161
7.8 XObject operator 164
7.9 In-line image operators 165

7.10 Type 3 font operators 167
7.11 In-line pass-through PostScript fragments 167
7.12 Compatibility operators 168

PDF Reference Manual April 16, 1996 Contents

vi Contents

Section II: Optimizing PDF Files

169

Chapter 8: General Techniques for Optimizing PDF Files

171

8.1 Use short names 171
8.2 Use direct and indirect objects appropriately 172
8.3 Take advantage of combined operators 173
8.4 Remove unnecessary clipping paths 174
8.5 Omit unnecessary spaces 174
8.6 Omit default values 175
8.7 Take advantage of forms 175
8.8 Limit the precision of real numbers 175
8.9 Write parameters only when they change 176

8.10 Don’t draw outside the crop box 176
8.11 Consider target device resolution 176
8.12 Share resources 177
8.13 Store common Page attributes in the Pages object 177

Chapter 9: Optimizing Text

179

9.1 Don’t produce unnecessary text objects 179
9.2 Use automatic leading 180
9.3 Take advantage of text spacing operators 183
9.4 Don’t replace spaces between words 184
9.5 Use the appropriate operator to draw text 184
9.6 Use the appropriate operator to position text 185
9.7 Remove text clipping 186
9.8 Consider target device resolution 187

Chapter 10: Optimizing Graphics

189

10.1 Use the appropriate color-setting operator 189
10.2 Defer path painting until necessary 189
10.3 Take advantage of the closepath operator 190
10.4 Don’t close a path more than once 191
10.5 Don’t draw zero-length lines 192
10.6 Make sure drawing is needed 193
10.7 Take advantage of rectangle and curve operators 193
10.8 Coalesce operations 194

PDF Reference Manual April 16, 1996 Contents

 vii

Chapter 11: Optimizing Images

195

11.1 Preprocess images 195
11.2 Match image resolution to target device resolution 195
11.3 Use the minimum number of bits per color component 196
11.4 Take advantage of indexed color spaces 196
11.5 Use the DeviceGray color space for monochrome images 197
11.6 Use in-line images appropriately 197
11.7 Don’t compress in-line images unnecessarily 197
11.8 Choose the appropriate filters 198

Chapter 12: Clipping and Blends

203

12.1 Clipping to a path 204
12.2 Clipping to text 206
12.3 Image masks 208
12.4 Blends 211

PDF Reference Manual April 16, 1996 Contents

viii Contents

Appendix A: Example PDF Files

219

A.1 Minimal PDF file 219

A.2 Simple text string 221

A.3 Simple graphics 223

A.4 Pages tree 226

A.5 Outline 230

A.6 Updated file 234

Appendix B: Summary of Page Marking Operators

243

Appendix C: Predefined Font Encodings

247

C.1 Predefined encodings sorted by character name 248

C.2 Predefined encodings sorted by character code 254

C.3 MacExpert encoding 260

Appendix D: Implementation Limits

263

Appendix E: Obtaining XUIDs and Technical Notes

267

Appendix F: PDF Name Registry

269

Appendix G: Compatibility

271

G.1 Version numbers 271

G.2 Viewer compatibility behavior 273

Bibliography

279

Colophon

283

PDF Reference Manual April 16, 1996 Figures

ix

Figures

Figure 1.1 Creating PDF files using PDF Writer 12
Figure 1.2 Creating PDF files using the Distiller program 13
Figure 1.3 Viewing and printing a PDF document 14
Figure 1.4 PDF components 20
Figure 2.1 Device space 22
Figure 2.2 User space 23
Figure 2.3 Relationships among PDF coordinate systems 24
Figure 2.4 Effects of coordinate transformations 26
Figure 2.5 Effect of the order of transformations 27
Figure 4.1 Structure of a PDF file that has not been updated 52
Figure 4.2 Structure of a PDF file after changes have been appended several times 59
Figure 5.1 Structure of a PDF document 62
Figure 5.2 Page object’s media box and crop box 69
Figure 5.3 Annotation types 75
Figure 5.4 Characteristics represented in the flags field of a font descriptor 113
Figure 5.5 Color spaces 114
Figure 6.1 Flatness 142
Figure 6.2 Line cap styles 143
Figure 6.3 Line dash pattern 144
Figure 6.4 Line join styles 145
Figure 6.5 Miter length 146
Figure 6.6 Bézier curve 151
Figure 6.7

v

 operator 152
Figure 6.8

y

 operator 153
Figure 6.9 Non-zero winding number rule 154
Figure 6.10 Even–odd rule 155
Figure 6.11 Character spacing 157
Figure 6.12 Horizontal scaling 157
Figure 6.13 Leading 158
Figure 6.14 Text rendering modes 159
Figure 6.15 Text rise 160

PDF Reference Manual April 16, 1996 Figures

x Figures

Figure 6.16 Effect of word spacing 160
Figure 6.17 Operation of

TJ

 operator 164
Figure 2.1 Restoring clipping path after clipping to text 187
Figure 4.1 Effect of JPEG encoding on a screenshot 199
Figure 4.2 Effect of JPEG encoding on a continuous-tone image 200
Figure 5.1 Clipping to a path 204
Figure 5.2 Using text as a clipping path 206
Figure 5.3 Images and image masks 209
Figure 5.4 Using an image to produce a linear blend 212
Figure 5.5 Using an image to produce a square blend 216
Figure A.1 Pages tree for 62-page document example 226
Figure A.2 Example of outline with six items, all open 230
Figure A.3 Example of outline with six items, five of which are open 232

PDF Reference Manual April 16, 1996 Tables

xi

Tables

Table 3.1 Escape sequences in strings 32
Table 3.2 Stream attributes 37
Table 3.3 Standard filters 38
Table 3.4 Optional parameters for LZW filter 43
Table 3.5 Optional parameters for CCITTFaxDecode filter 45
Table 4.1 Trailer attributes 57
Table 5.1 Catalog attributes 64
Table 5.2 Pages attributes 65
Table 5.3 Page attributes 67
Table 5.4 Transition attributes 71
Table 5.5 Transition Effects 72
Table 5.6 Effect parameters 73
Table 5.7 Annotation attributes (common to all annotations) 76
Table 5.8 Text annotation attributes (in addition to those in Table 5.7) 77
Table 5.9 Link annotation attributes (in addition to those in Table 5.7) 78
Table 5.10 Destination specification 79
Table 5.11 GoTo action attributes 81
Table 5.12 GoToR action attributes 82
Table 5.13 Launch action attributes 83
Table 5.14 Windows-specific launch attributes 84
Table 5.15 Thread action attributes 84
Table 5.16 URI action attributes 86
Table 5.17 URI attributes 87
Table 5.18 Examples of file specifications 89
Table 5.19 File specification attributes 90
Table 5.20 Movie annotation attributes (in addition to those in Table 5.7) 91
Table 5.21 Movie dictionary attributes 92
Table 5.22 Activation attributes 93
Table 5.23 Outlines attributes 94
Table 5.24 Outline entry attributes 94
Table 5.25 Predefined procsets 98

PDF Reference Manual April 16, 1996 Tables

xii Tables

Table 5.26 Attributes common to all types of fonts 98
Table 5.27 Type 1 font additional attributes 100
Table 5.28 Base 14 fonts 100
Table 5.29 Multiple master Type 1 font additional attributes 103
Table 5.30 Type 3 font additional attributes 104
Table 5.31 TrueType font attributes 106
Table 5.32 Font encoding attributes 107
Table 5.33 Font descriptor attributes 109
Table 5.34 Additional attributes for FontFile stream 111
Table 5.35 Font flags 112
Table 5.36

CalGray

 attributes 117
Table 5.37

CalRGB

 attributes 118
Table 5.38

Lab

 attributes 119
Table 5.39 Image resource attributes 122
Table 5.40 Default

Decode

 arrays for various color spaces 125
Table 5.41 Color rendering intents 126
Table 5.42 Form resource attributes 127
Table 5.43 PDF Info dictionary attributes 130
Table 5.44 Thread attributes 131
Table 5.45 Bead attributes 132
Table 5.46 Encrypt dictionary attributes 134
Table 5.47 Standard security handler attributes 136
Table 6.1 General graphics state parameters 139
Table 6.2 Text-specific graphics state parameters 140
Table 6.3 Abbreviations for in-line image names 165
Table 1.1 Optimized operator combinations 174
Table 2.1 Comparison of text string operators 185
Table 2.2 Comparison of text positioning operators 186
Table 4.1 Comparison of compression filters for images 201
Table A.1 Objects in empty example 219
Table A.2 Objects in “Hello World” example 221
Table A.3 Objects in graphics example 224
Table A.4 Object use after adding four text annotations 235
Table A.5 Object use after deleting two text annotations 238
Table A.6 Object use after adding three text annotations 240
Table B.1 PDF page marking operators 243
Table D.1 Architectural limits 264
Table G.1 Acrobat 1.0 Viewer behavior with unknown filters 276
Table G.2 Acrobat 2.0 Viewer behavior with unknown filters 277

PDF Reference Manual April 16, 1996 Examples

xiii

Examples

Example 3.1 Dictionary 35
Example 3.2 Dictionary within a dictionary 36
Example 3.3 Stream that has been LZW and ASCII85 encoded 38
Example 3.4 Unencoded stream 39
Example 3.5 Indirect reference 49
Example 4.1 Cross-reference section with a single subsection 55
Example 4.2 Cross-reference section with multiple subsections 56
Example 4.3 Trailer 58
Example 5.1 Catalog 63
Example 5.2 Pages tree for a document containing three pages 66
Example 5.3 Inheritance of attributes 67
Example 5.4 Page with thumbnail, annotations, and Resources dictionary 70
Example 5.5 A page with information for presentation mode 73
Example 5.6 Thumbnail 74
Example 5.7 Text annotation 78
Example 5.8 Link annotation 78
Example 5.9 GoTo action 82
Example 5.10 Outlines object with six open entries 94
Example 5.11 Outline entry 96
Example 5.12 Resources dictionary 97
Example 5.13 Type 1 font resource and character widths array 101
Example 5.14 Multiple master font resource and character widths array 103
Example 5.15 Type 3 font resource 105
Example 5.16 TrueType font resource 106
Example 5.17 Font encoding 107
Example 5.18 Embedded Type 1 font definition 111
Example 5.19 Font descriptor 114
Example 5.20 Color space resource for an indexed color space 120
Example 5.21 Image resource with length specified as an indirect object 123
Example 5.22 Form resource 128
Example 5.23 Info dictionary 131

PDF Reference Manual April 16, 1996 Examples

xiv Examples

Example 5.24 Thread 132
Example 6.1 In-line image 166
Example 2.1 Changing the text matrix inside a text object 179
Example 2.2 Multiple lines of text without automatic leading 180
Example 2.3 Multiple lines of text using automatic leading 181
Example 2.4

TJ

 operator without automatic leading 181
Example 2.5 Use of the

T*

 operator 182
Example 2.6 Using the

TL

 operator to set leading 182
Example 2.7 Using the

TD

 operator to set leading 183
Example 2.8 Character and word spacing using the

Tc

 and

Tw

 operators 183
Example 2.9 Character and word spacing using the

"

 operator 184
Example 2.10 Restoring clipping path after using text as clipping path 186
Example 3.1 Each path segment as a separate path 190
Example 3.2 Grouping path segments into a single path 190
Example 3.3 Using redundant

 l

 and

h

 operators to close a path inefficiently 191
Example 3.4 Using the

 l

 operator to close a path inefficiently 191
Example 3.5 Taking advantage of the

 h

operator to close a path 191
Example 3.6 Improperly closing a path: multiple path closing operators 192
Example 3.7 Properly closing a path: single path closing operator 192
Example 3.8 Portion of a path before coalescing operations 194
Example 3.9 Portion of a path after coalescing operations 194
Example 5.1 Clipping to a path 205
Example 5.2 Using text as a clipping path 206
Example 5.3 Images and image masks 209
Example 5.4 Using images as blends 213
Example 5.5 Image used to produce a grayscale square blend 216
Example A.1 Minimal PDF file 220
Example A.2 PDF file for simple text example 222
Example A.3 PDF file for simple graphics example 224
Example A.4 Pages tree for a document containing 62 pages 226
Example A.5 Six entry outline, all items open 230
Example A.6 Six entry outline, five entries open 232
Example A.7 Update section of PDF file when four text annotations are added 235
Example A.8 Update section of PDF file when one text annotation is modified 237
Example A.9 Update section of PDF file when two text annotations are deleted 239
Example A.10 Update section of PDF file after three text annotations are added 240

PDF Reference Manual April 16, 1996 Chapter 1: Introduction

1

CHAPTER

1

Introduction

This book describes the Portable Document Format (PDF), the native file
format of the Adobe

®

 Acrobat

®

 family of products. The goal of these
products is to enable users to easily and reliably exchange and view
electronic documents independent of the environment in which they were
created. PDF relies on the imaging model of the PostScript

®

 language to
describe text and graphics in a device- and resolution-independent manner.
To improve performance for interactive viewing, PDF defines a more
structured format than that used by most PostScript language programs.
PDF also includes objects, such as annotations and hypertext links, that are
not part of the page itself but are useful for interactive viewing.

PDF files are built from a sequence of numbered objects similar to those
used in the PostScript language. The text, graphics, and images that make
up the contents of a page are represented using operators based on those in
the PostScript language, and closely follow the Adobe Illustrator

®

 3.0 page
description operators.

A PDF file is not a PostScript language program and cannot be directly
interpreted by a PostScript interpreter. However, the page descriptions in a
PDF file can be converted into a PostScript language program.

1.1 About this book

This book provides a description of the PDF file format, as well as
suggestions for producing efficient PDF files. It is intended primarily for
application developers who wish to produce PDF files directly. This book
also contains enough information to allow developers to write applications
that read and modify PDF files. While PDF is independent of any particular
application, occasionally PDF features are best explained by the actions a
particular application takes when it encounters that feature in a file.
Similarly, Appendix D discusses some implementation limits in the Acrobat
viewer applications, even though these limits are not part of the file format
itself.

PDF Reference Manual April 16, 1996 Chapter 1: Introduction

2 Chapter 1: Introduction

This book consists of two sections. The first section describes the file format
and the second lists techniques for producing efficient PDF files. In
addition, appendices provide example files, detailed descriptions of several
predefined font encodings, and a summary of PDF page marking operators.

Readers are assumed to have some knowledge of the PostScript language,
as described in the

PostScript Language Reference Manual, Second Edition

[1]. In addition, some understanding of fonts, as described in the

Adobe
Type 1 Font Format

 [4]

,

 is useful.

The first section of this book, Portable Document Format, includes Chapters
2 through 7 and describes the PDF file format.

Chapter 2 describes the motivation for creating the PDF file format and
provides an overview of its architecture. PDF is compared to the PostScript
language.

Chapter 3 discusses the coordinate systems and transformations used in
PDF files. Because the coordinate systems used in PDF are very much like
those used in the PostScript language, users with substantial background in
the PostScript language may wish to read this chapter only as a review.

Chapter 4 describes the types of objects used to construct documents in
PDF files. These types are similar to those used in the PostScript language.
Readers familiar with the types of objects present in the PostScript language
may wish to read this chapter quickly as a reminder.

Chapter 5 provides a description of the format of PDF files, how they are
organized on disk, and the mechanism by which updates can be appended to
a PDF file.

Chapter 6 describes the way that a document is represented in a PDF file,
using the object types presented in Chapter 4.

Chapter 7 discusses the page marking operators used in PDF files. These are
the operators that actually make marks on a page. Many are similar to one
or more PostScript language operators. Readers with PostScript language
experience will quickly see the similarities.

The second section of this book, Optimizing PDF Files, includes Chapters 8
through 12 and describes techniques for producing efficient PDF files.
Many of the techniques presented can also be used in the PostScript
language. The techniques are broken down into four areas: text, graphics,
images, and general techniques.

PDF Reference Manual April 16, 1996 Chapter 1: Introduction

1.2 Introduction to Version 1.1—PDF 1.1 3

Chapter 8 discusses general optimizations that may be used in a wide
variety of situations in PDF files.

Chapter 9 discusses optimizations for text.

Chapter 10 discusses graphics optimizations.

Chapter 11 discusses optimizations that may be used on sampled images.

Finally, Chapter 12 contains techniques for using clipping paths to restrict
the region in which drawing occurs and a technique using images to make
efficient blends.

1.2 Introduction to Version 1.1—PDF 1.1

This document is a revision of the 1993 edition of

Portable Document
Format Reference Manual

. It describes version 1.1 of the Portable
Document Format.

The PDF specification is independent of any particular implementation of a
PDF generator or consumer. To provide guidance to implementors,
however,

Implementation Notes

that accompany the specification and
Appendix G describe the behavior of Acrobat viewers (versions 1.0, 2.0,
and 2.1) when they encounter the changes documented herein.

Implementation note PDF 1.1 is the native file format of the Adobe Acrobat 2.0 family of
products.

The PDF 1.1 specification, like the PDF 1.0 specification, defines a
minimum interchange level of functionality. The Portable Document Format
is an extensible format, which means that PDF files may contain objects not
defined by this specification.

Consumers

, applications that read PDF files
and interpret their contents, are expected to implement correctly the
semantics of objects that are specified by PDF 1.1 and, as gracefully as
possible, to ignore any objects that they do not understand. Appendix G
provides guidance on how a consumer should handle objects it does not
understand.

Implementation note Some Acrobat 2.0 and subsequent products provide an interface that
supports plug-ins. These plug-ins can use and/or put private data objects
within a PDF file. Appendix G indicates the kinds of private data that can
be used and Appendix F defines a registry for this data. The registry can be
used to avoid conflicts in identifying data from independent plug-ins.

PDF Reference Manual April 16, 1996 Chapter 1: Introduction

4 Chapter 1: Introduction

New features introduced in PDF 1.1 include the following:

• The ability to protect a document with a password and to restrict
operations on a document.

• The ability to tie blocks of text together into “articles,” making reading
easier.

• The generalization of link and bookmark destinations to “actions,” which
include links to other PDF files and foreign files.

• The ability to define new annotation types and to provide additional
attributes for existing types.

• The ability to specify default settings and actions when a document is
opened.

• Device-independent color.

• An ID included in files to make it easier to verify that a file is the correct
file, even under circumstances where the file’s name is incorrect (such as
files on some networks).

• A binary option that allows files to be smaller.

• A new date format that allows programmatic comparison of dates.

• The ability to provide additional document information.

Note In PDF 1.1, dictionary key names are often one or two letters in order to
conserve space in files. When these keys are described below, they are
followed in parentheses by a more descriptive string. However, only the
actual one- or two-letter name may be used in a PDF file.

Note PDF is an evolving language, and new editions of this manual will be
offered on an ongoing basis to document the changes.

PDF Reference Manual April 16, 1996 Chapter 1: Introduction

1.3 Conventions used in this book 5

1.3 Conventions used in this book

Text styles are used to identify various operators, keywords, terms, and
objects. Four formatting styles are used in this book:

• PostScript language operators, PDF operators, PDF keywords, the names
of keys in dictionaries, and other predefined names are written in
boldface. Examples are

moveto

,

Tf

,

 stream

,

Type

, and

MacRomanEncoding

.

• Operands of PDF operators are written in an italic sans serif font. An
example is

linewidth

.

• Object types are written with initial capital letters. An example is
FontDescriptor.

• The first occurrence of terms and the boolean values

true

 and

false are
written in italics. This style is also used for emphasis.

Tables containing dictionary keys are normally organized with the Type and
Subtype keys first, followed by any other keys that are required in the
dictionary, followed by any optional keys.

All changes from the first edition of this manual are marked with change
bars in the margin. Most of the changes are related to the differences
between PDF 1.0 and PDF 1.1. Other changes are corrections to errors in
the first edition.

1.4 A note on syntax

Throughout this book, Backus–Naur form (BNF) notation is used to
describe syntax:

<xyz> ::= abc <def> ghi |
<k> j

A token enclosed in angle brackets names a class of document component,
while plain text appears verbatim or with some obvious substitution. The
grammar rules have two parts. The name of a class of component is on the
left of the definition symbol (::=). In the example above, the class is xyz. On
the right of the definition symbol is a set of one or more alternative forms
that the class component might take in the document. A vertical bar (|)
separates alternative forms.

PDF Reference Manual April 16, 1996 Chapter 1: Introduction

6 Chapter 1: Introduction

The right side of the definition may be on one or more lines. With only a
few exceptions, these lines do not correspond to lines in the file.

The notation {...} means that the items enclosed in braces are optional. If an
asterisk follows the braces, the objects inside the braces may be repeated
zero or more times. The notation <...>+ means that the items enclosed
within the brackets must be repeated one or more times.

When an operator appears in a BNF specification, it is shorthand for the
operator plus its operands. For example, when the operator m appears in a
BNF specification, it means x y m, where x and y are numbers.

Note that PDF is case-sensitive. Uppercase and lowercase letters are
distinct.

1.5 Copyrights and permissions to use PDF

The general idea of utilizing an interchange format for final-form
documents is in the public domain. Anyone is free to devise his or her own
set of unique commands and data structures that define an interchange
format for final-form documents. Adobe owns the copyright in the data
structures, operators, and the written specification for the particular
interchange format called the Portable Document Format. These elements
may not be copied without Adobe’s permission.

Adobe will enforce its copyright. Adobe’s intention is to maintain the
integrity of the Portable Document Format as a standard. This enables the
public to distinguish between the Portable Document Format and other
interchange formats for final-form documents.

However, Adobe desires to promote the use of the Portable Document
Format for information interchange among diverse products and
applications. Accordingly, Adobe gives permission to anyone to:

• Prepare files in which the file content conforms to the Portable
Document Format.

• Write drivers and applications that produce output represented in the
Portable Document Format.

• Write software that accepts input in the form of the Portable Document
Format and displays the results, prints the results, or otherwise interprets
a file represented in the Portable Document Format.

PDF Reference Manual April 16, 1996 Chapter 1: Introduction

1.5 Copyrights and permissions to use PDF 7

• Copy Adobe’s copyrighted list of operators and data structures to the
extent necessary to use the Portable Document Format for the above
purposes.

The only condition on such permission is that anyone who uses the
copyrighted list of operators and data structures in this way must include an
appropriate copyright notice.

This limited right to use the copyrighted list of operators and data structures
does not include the right to copy the Portable Document Format Reference
Manual, other copyrighted material from Adobe, or the software in any of
Adobe’s products which use the Portable Document Format, in whole or in
part.

PDF Reference Manual April 16, 1996 Chapter 1: Introduction

8 Chapter 1: Introduction

PDF Reference Manual April 16, 1996

Section I

Portable Document Format

PDF Reference Manual April 16, 1996

PDF Reference Manual April 16, 1996 Chapter 2: Overview

11

CHAPTER 2

Overview

Before examining the detailed structure of a PDF file, it is important to
understand what PDF is and how it relates to the PostScript language. This
chapter discusses PDF and its relationship to the PostScript language.

Chapter 3 discusses the coordinate systems used to describe various
components of a PDF file. Chapters 4 and 5 discuss the basic types of
objects supported by PDF and the structure of a PDF file. Chapters 6 and 7
describe the structure of a PDF document and the operators used to draw
text, graphics, and images.

2.1 What is the Portable Document Format?

PDF is a file format used to represent a document in a manner independent
of the application software, hardware, and operating system used to create
it. A PDF file contains a PDF document and other supporting data.

A PDF document contains one or more pages. Each page in the document
may contain any combination of text, graphics, and images in a device- and
resolution-independent format. This is the page description. A PDF
document may also contain information possible only in an electronic
representation, such as hypertext links.

In addition to a document, a PDF file contains the version of the PDF
specification used in the file and information about the location of important
structures in the file.

PDF Reference Manual April 16, 1996 Chapter 2: Overview

12 Chapter 2: Overview

2.2 Using PDF

To understand PDF, it is important to understand how PDF documents will
be produced and used. As PDF documents and applications that read PDF
files become more prevalent, new ways of creating and using PDF files will
be invented. This is one of the goals of this book—to make the file format
accessible so that application developers can expand on the ideas behind
PDF and the applications that initially support it.

Currently, PDF files may be produced either directly from applications or
from files containing PostScript page descriptions.

Many applications can produce PDF files directly. The PDF Writer,
available on both Apple® Macintosh® computers and computers running the
Microsoft® Windows® environment, acts as a printer driver. A printer driver
normally converts operating system graphics and text commands
(QuickDraw™ for the Macintosh and GDI for Windows) into commands
understood by a printer. The driver embeds these commands in a stream of
commands sent to a printer that results in a page being printed. Instead of
sending these commands to a printer, the PDF Writer converts them to PDF
operators and embeds them in a PDF file, as shown in Figure 2.1.

Figure 2.1 Creating PDF files using PDF Writer

The resulting PDF files are platform-independent. Regardless of whether
they were generated on a Macintosh or Windows computer, they may be
viewed by a PDF viewing application on any platform.

Macintosh

application

PDF Writer

QuickDraw

Windows

application

GDI

PDF

Acrobat Exchange or Reader

PDF Reference Manual April 16, 1996 Chapter 2: Overview

2.2 Using PDF 13

Some applications produce PostScript page descriptions directly because of
limitations in the QuickDraw or GDI imaging models or because they run
on DOS or UNIX® computers, where there is no system-level printer driver.
For these applications, PostScript page descriptions can be converted into
PDF files using the Acrobat Distiller® application, as shown in Figure 2.2.
The Distiller application accepts any PostScript page description, whether
created by a program or hand-coded by a human. The Distiller application
produces more efficient PDF files than PDF Writer for some application
programs.

Figure 2.2 Creating PDF files using the Distiller program

Once a PDF file has been created, Acrobat Exchange™ or Acrobat Reader
can be used to view and print the document contained in the file, as shown
in Figure 2.3. Users can navigate through the document using thumbnail
sketches, hypertext links, and bookmarks. The document’s text may be
searched and extracted for use in other applications. In addition, an Acrobat
Exchange user may modify a PDF document by creating text annotations,
hypertext links, thumbnail sketches of each page, and bookmarks that
directly access views of specific pages.

Acrobat

Distiller

PostScript

page description

PDF

Acrobat Exchange or Reader

PDF Reference Manual April 16, 1996 Chapter 2: Overview

14 Chapter 2: Overview

Figure 2.3 Viewing and printing a PDF document

2.3 General properties

Given the goals and intended use of PDF, its design has several notable
properties. This section describes those properties.

2.3.1 PostScript language imaging model

PDF represents text and graphics using the imaging model of the PostScript
language. Like a PostScript language program, a PDF page description
draws a page by placing “paint” on selected areas.

• The painted figures may be letter shapes, regions defined by
combinations of lines and curves, or sampled images such as digitally
sampled representations of photographs.

• The paint may be any color.

• Any figure can be clipped to another shape, so that only portions of the
figure within the shape appear on the page.

• When a page description begins, the page is completely blank. Various
operators in the page description place marks on the page. Each new
mark completely obscures any marks it may overlay.

The PDF page marking operators are similar to the marking operators in the
PostScript language. The main reason that the PDF marking operators differ
from the PostScript language marking operators is that PDF is not a
programming language and does not contain procedures, variables, and

PostScript

printer

PostScript

program

Other

printer

Printer

commands

PDF

Acrobat Exchange or Reader

PDF

PDF Reference Manual April 16, 1996 Chapter 2: Overview

2.3 General properties 15

control constructs. PDF trades reduced flexibility for improved efficiency. A
typical PostScript language program defines a set of high-level operators
using the PostScript language marking operators. PDF defines its own set of
high-level operators that is sufficient for describing most pages. Because
these operators are implemented directly in machine code rather than
PostScript language code, PDF page descriptions can be drawn more
quickly. Because arbitrary programming constructs are not permitted,
applications can more efficiently and reliably locate text strings in a PDF
document.

2.3.2 Portability

A PDF file is either a 7-bit ASCII file or a binary file. If it is a 7-bit ASCII
file, only the printable subset of the 7-bit ASCII code plus space, tab and
newline (return or linefeed) is used. If it is a binary file, the entire 8-bit
range of characters may be used.

ASCII is the most portable form, since it is the only form that will fit
through channels that are not 8-bit clean or are subject to end-of-line
translation, etc. A binary file simply cannot be transported in such cases.

Unfortunately, some agents, when presented with information labelled as
“text,” take unreasonable liberties with the contents. For example, mail
transmission systems may not preserve certain 7-bit characters and may
change line endings. This can cause damage to PDF files.

Therefore, in situations where it is possible to label PDF files as “binary,”
we recommend that this be done. One method for encouraging such
treatment is to include a few binary characters (codes greater than 127) in a
comment near the beginning of the file, as described in Section 5.2 on page
53, even if the rest of the file is ASCII. This ensures that a PDF file will be
treated as binary when this is possible, while still allowing it to be
transferred through a non-binary channel without damage.

Implementation note Acrobat 2.0 applications produce PDF files with a comment that includes
binary characters.

Use of PDF files that actually contain binary information should be
restricted to closed environments which are known to transport and store
binary files safely or where some external means, such as the UNIX
uuencode facility, is used to convert the file into and out of a transport-
independent form.

Implementation note The Acrobat viewer for UNIX will directly read uuencoded PDF files.

PDF Reference Manual April 16, 1996 Chapter 2: Overview

16 Chapter 2: Overview

2.3.3 Compression

To reduce file size, PDF supports a number of industry-standard
compression filters:

• JPEG compression of color and grayscale images

• CCITT Group 3, CCITT Group 4, LZW (Lempel-Ziv-Welch), and Run
Length compression of monochrome images

• LZW compression of text and graphics.

Using JPEG compression, color and grayscale images can be compressed
by a factor of 10 or more. Effective compression of monochrome images
depends upon the compression filter used and the properties of the image,
but reductions of 2:1 to 8:1 are common. LZW compression of text and
graphics comprising the balance of the document results in compression
ratios of approximately 2:1. All of these compression filters produce binary
data, which is encoded in the ASCII base-85 encoding to maintain
portability.

2.3.4 Font independence

Managing fonts is a fundamental challenge in document exchange.
Generally, the receiver of a document must have the same fonts the sender
used to create the document. Otherwise, a default font is substituted,
producing unexpected and undesirable effects because the default font has
different character metrics (widths) than the intended font. The sender could
include the fonts with the document, but this can easily make even a short
document quite large—a typical two-page memo using four fonts might
grow from 10K to 250K. Another possibility is that the sender could convert
each page of the document to a fixed-resolution image like a facsimile. Even
when compressed, however, the image of a single page can be quite large
(45–60K when sampled at 200 dpi). In addition, there is no intelligence left
in the file, preventing the receiver from searching for or extracting text from
the document.

PDF provides a new solution that makes a document independent of the
fonts used to create it. A PDF file contains a font descriptor for each font
used in a document. The font descriptor includes the font name, character
metrics, and style information. This is the information needed to simulate
missing fonts and is typically only 1–2K per font.

PDF Reference Manual April 16, 1996 Chapter 2: Overview

2.3 General properties 17

If a font used in a document is available on the computer where the
document is viewed, it is used. If it is not available, a multiple master font is
used to simulate on a character-by-character basis the weight and width of
the original font, to maintain the overall “color” and formatting of the
document. This solution applies to both Adobe Type 1 fonts and fonts in the
TrueType™ format [17] developed by Apple Computer, Inc.

Symbolic fonts must be handled in a special way. A symbolic font is any
font that does not use the standard ISOLatin1 character set. Fonts such as
Carta®, Adobe Caslon Swash Italic, Minion™ Ornaments, and Lucida®
Math fall into this category. It is not possible to simulate a symbolic font
effectively.

For symbolic fonts, a font descriptor (including metrics and style
information) is not sufficient; the actual character shapes (or glyphs) are
required to accurately display and print the document. For all symbolic
fonts other than Symbol and ITC Zapf Dingbats®, a compressed version of
the Type 1 font program for the font is included in the PDF file. Symbol and
ITC Zapf Dingbats, the most widely used symbolic fonts, ship with Acrobat
Exchange and Acrobat Reader and do not need to be included in a PDF file.

2.3.5 Single-pass file generation

Because of system limitations and efficiency considerations, it may be
desirable or necessary for an implementation of a program that produces
PDF such as the PDF Writer to create a PDF file in a single pass. This may
be, for example, because the application has access to limited memory or is
unable to open temporary files. For this reason, PDF supports single-pass
generation of files. While PDF requires certain objects to contain a number
specifying their length in bytes, a mechanism is provided allowing the
length to be located in the file after the object. In addition, information such
as the number of pages in the document can be written into the file after all
pages have been written into the file.

2.3.6 Random access

Tools that extract and display a selected page from a PostScript language
program must scan the program from its beginning until the desired page is
found. On average, the time needed to view a page depends not only on the
complexity of the page but also on the total number of pages in the
document. This is problematic for interactive document viewing, where it is
important that the time needed to view a page be independent of the total
number of pages in the document.

PDF Reference Manual April 16, 1996 Chapter 2: Overview

18 Chapter 2: Overview

Every PDF file contains a cross-reference table that can be used to locate
and directly access pages and other important objects in the file. The
location of the cross-reference table is stored at the end of the file, allowing
applications that produce PDF files in a single pass to store it easily and
allowing applications that read PDF files to locate it easily. Using the cross-
reference table, the time needed to view a page in a PDF file can be nearly
independent of the total number of pages in the document.

2.3.7 Incremental update

Applications may allow users to modify PDF documents, which can contain
hundreds of pages or more. Users should not have to wait for the entire file
to be rewritten each time modifications to the document are saved. PDF
allows modifications to be appended to a file, leaving the original data
intact. The addendum appended when a file is incrementally updated
contains only the objects that were modified or added, and includes an
update to the cross-reference table. Support for incremental update allows
an application to save modifications to a PDF document in an amount of
time proportional to the size of the modification instead of the size of the
file. In addition, because the original contents of the file are still present in
the file, it is possible to undo saved changes by deleting one or more
addenda.

2.3.8 Extensibility

PDF is designed to be extensible. Undoubtedly, developers will want to add
features to PDF that have not yet been implemented or thought of. For
example, only simple text annotations are allowed—graphics cannot be
included.

The design of PDF is such that not only can new features be added, but
applications that understand earlier versions of the format will not
completely break when they encounter features that they do not implement.
Appendix G, “Compatibility,” specifies how a viewer should behave when it
reads a file that does not conform to the specification it was expecting.

2.4 PDF and the PostScript language

The preceding sections mentioned several ways in which PDF differs from
the PostScript language. This section summarizes these differences and
describes the process of converting a PDF file into a PostScript language
program.

PDF Reference Manual April 16, 1996 Chapter 2: Overview

2.4 PDF and the PostScript language 19

While PDF and the PostScript language share the same basic imaging
model, there are some important differences between them:

• A PDF file may contain objects such as hypertext links that are useful
only for interactive viewing.

• To simplify the processing of page descriptions, PDF provides no
programming language constructs.

• PDF enforces a strictly defined file structure that allows an application to
access parts of a document randomly.

• PDF files contain information such as font metrics, to ensure viewing
fidelity.

Because of these differences, a PDF file cannot be downloaded directly to a
PostScript printer for printing. An application that prints a PDF file to a
PostScript printer must carry out the following steps:

1. Insert procsets, sets of PostScript language procedure definitions
that implement the PDF page description operators.

2. Extract the content for each page. Pages are not necessarily stored in
sequential order in the PDF file. Each page description is essentially
the script portion of a traditional PostScript language program using
very specific procedures, such as “m” for moveto and “l” for
lineto.

3. Decode compressed text, graphics, and image data. This is not
required for PostScript Level 2 printers, which can accept
compressed data in a PostScript language file.

4. Insert any resources, such as fonts, into the PostScript language file.
Substitute fonts are defined and inserted as needed, based on the font
metrics in the PDF file.

5. Put the information in the correct order. The result is a traditional
PostScript language program that fully represents the visual aspects
of the document, but no longer contains PDF elements such as
hypertext links, annotations, and bookmarks.

6. Send the PostScript language program to the printer.

PDF Reference Manual April 16, 1996 Chapter 2: Overview

20 Chapter 2: Overview

2.5 Understanding PDF

PDF is best understood by thinking of it in four parts, as shown in Figure
2.4.

Figure 2.4 PDF components

The first component is the set of basic object types used by PDF to represent
objects. These types, with only a few exceptions, correspond to the data
types used in the PostScript language. Chapter 4 discusses these object
types.

The second component is the PDF file structure. The file structure
determines how objects are stored in a PDF file, how they are accessed, and
how they are updated. This structure is independent of the semantics of the
objects. Chapter 5 explains the file structure.

The third component is the PDF document structure. The document
structure specifies how the basic object types are used to represent
components of a PDF document: pages, annotations, hypertext links, fonts,
and more. Chapter 6 explains the PDF document structure.

The fourth and final component is the PDF page description. A PDF page
description, while part of a PDF page object, can be explained
independently of the other components. A PDF page description has only
limited interaction with other parts of a PDF document. This simplifies its
conversion into a PostScript language program. Chapter 7 discusses PDF
page descriptions.

Objects

File

structure

Document

structure

Page

description

PDF Reference Manual April 16, 1996 Chapter 3: Coordinate Systems

21

CHAPTER 3

Coordinate Systems

Coordinate systems define the canvas on which all drawing in a PDF
document occurs; that is, the position, orientation, and size of the text,
graphics, and images that appear on a page are determined by coordinate
systems.

PDF supports a number of coordinate systems, most of them identical to
those used in the PostScript language. This chapter describes each of the
coordinate systems used in PDF, how they are related, and how
transformations among coordinate systems are specified. At the end of the
chapter is a description of the mathematics involved in coordinate
transformations. It is not necessary to read this section to use coordinate
systems and transformations. It is presented for those readers who wish to
gain a deeper understanding of the mechanics of coordinate
transformations.

3.1 Device space

The contents of a page ultimately appear on a display or a printer. Each type
of device on which a PDF page can be drawn has its own built-in coordinate
system, and, in general, each type of device has a different coordinate
system. Coordinates specified in a device’s native coordinate system are
said to be in device space. On pixel-based devices such as computer screens
and laser printers, coordinates in device space generally specify a particular
pixel.

If coordinates in PDF files were specified in device space, the files would be
device-dependent and would accordingly appear differently on different
devices. For example, images drawn in the typical device space of a 72 pixel
per inch display and on a 600 dpi printer differ in size by more than a factor
of 8; an eight-inch line segment on a display would appear as a one-inch
segment on the printer. Different devices also have different orientations of
their coordinate systems. On one device, the origin of the coordinate system
may be at the upper left corner of the page, with the positive direction of the

PDF Reference Manual April 16, 1996 Chapter 3: Coordinate Systems

22 Chapter 3: Coordinate Systems

y-axis pointing downward. On another device, the origin may be in the
lower left corner of the page with the positive direction of the y-axis
pointing upward. Figure 3.1 shows an object that is two units high in device
space, and illustrates the fact that coordinates specified in device space are
device-dependent.

Figure 3.1 Device space

3.2 User space

PDF, like the PostScript language, defines a coordinate system that appears
the same, regardless of the device on which output occurs. This allows PDF
documents to be independent of the resolution of the output device. This
resolution-independent coordinate system is called user space and provides
the overall coordinate system for a page.

The transformation from user space to device space is specified by the
current transformation matrix (CTM). Figure 3.2 shows an object that is
two units high in user space and indicates that the CTM provides the
resolution-independence of the user space coordinate system.

Device space for

72-dpi screen

Device space for

300-dpi printer

PDF Reference Manual April 16, 1996 Chapter 3: Coordinate Systems

3.3 Text space 23

Figure 3.2 User space

The user space coordinate system is initialized to a default state for each
page of a document. By default, user space coordinates have 72 units per
inch, corresponding roughly to the various definitions of the typographic
unit of measurement known as the point. The positive direction of the y-axis
points upward, and the positive direction of the x-axis to the right. The
region of the default coordinate system that is viewed or printed can be
different for each page, and is described in Section 6.4, “Page objects.”

3.3 Text space

The coordinates of text are specified in text space. The transformation from
text space to user space is provided by a matrix called the text matrix. This
matrix is often set so that text space and user space are the same.

User space

Device space for

72-dpi screen

Device space for

300-dpi printer

CTM

PDF Reference Manual April 16, 1996 Chapter 3: Coordinate Systems

24 Chapter 3: Coordinate Systems

3.4 Character space

Characters in a font are defined in character space. The transformation
from character space to text space is defined by a matrix. For most types of
fonts, this matrix is predefined except for an overall scale factor. (For
details, see Section 6.8.2, “Font resources.”) This scale factor changes when
a user selects the font size for text.

3.5 Image space

All images are defined in image space. The transformation from image
space to user space is predefined and cannot be changed. All images are one
unit by one unit in user space, regardless of the number of samples in the
image.

3.6 Form space

PDF provides an object known as a Form, discussed in Section 6.8.6,
“XObject resources.” Forms contain sequences of operations and are the
same as forms in the PostScript language. The space in which a form is
defined is form space. The transformation from form space to user space is
specified by a matrix contained in the form.

3.7 Relationships among coordinate systems

PDF defines a number of interrelated coordinate systems, described in the
previous sections. Figure 3.3 shows the relationships among the coordinate
systems. Each line in the figure represents a transformation from one
coordinate system to another. PDF allows modifications to many of these
transformations.

Figure 3.3 Relationships among PDF coordinate systems

Character

space

User

space

Text

space

Device

space

Form

space

Image

space

PDF Reference Manual April 16, 1996 Chapter 3: Coordinate Systems

3.8 Transformations between coordinate systems 25

Because PDF coordinate systems are defined relative to each other, changes
made to one transformation can affect the appearance of objects drawn in
several coordinate systems. For example, changes made to the CTM affect
the appearance of all objects, not just graphics drawn directly in user space.

3.8 Transformations between coordinate systems

Transformation matrices specify the relationship between two coordinate
systems. By modifying a transformation matrix, objects can be scaled,
rotated, translated, or transformed in other ways.

A transformations matrix in PDF, as in the PostScript language, is specified
by an array containing six elements. This section lists the arrays used for the
most common transformations. The following section contains more
mathematical details of transformations, including information on
specifying transformations that are combinations of those listed in this
section.

• Translations are specified as [1 0 0 1 tx ty], where tx and ty are the
distances to translate the origin of the coordinate system in x and y,
respectively.

• Scaling is obtained by [sx 0 0 sy 0 0]. This scales the coordinates so that
one unit in the x and y directions of the new coordinate system is the
same size as sx and sy units in the previous coordinate system,
respectively.

• Rotations are carried out by [cosθ sinθ -sinθ cosθ 0 0], which has the
effect of rotating the coordinate system axes by θ degrees
counterclockwise.

• Skew is specified by [1 tanα tanβ 1 0 0], which skews the x-axis by an
angle α and the y-axis by an angle β. α and β are measured in degrees.

Figure 3.4 shows examples of each transformation. The directions of
translation, rotation, and skew shown in the figure correspond to positive
values of the array elements.

PDF Reference Manual April 16, 1996 Chapter 3: Coordinate Systems

26 Chapter 3: Coordinate Systems

Figure 3.4 Effects of coordinate transformations

Translation Scaling

Rotation Skewing

If several transformations are applied, the order in which they are applied
generally is important. For example, scaling the x-axis followed by a
translation of the x-axis is not the same as first translating the x-axis, then
performing the scaling. In general, to obtain the expected results,
transformations should be done in the order: translate, rotate, scale.

Figure 3.5 shows that the order in which transformations are applied is
important. The figure shows two sequences of transformations applied to a
coordinate system. After each successive transformation, an outline of the
letter “n” is drawn. The transformations in the figure are a translation of 10
units in the x-direction and 20 units in the y-direction, a rotation of 30
degrees, and a scaling by a factor of 3 in the x-direction. In the figure, the
axes are drawn with a dash-pattern having two units dash, two units gap. In
addition, the untransformed coordinate system is drawn in light gray in each
section. Notice that the scale–rotate–translate ordering results in a distortion
of the coordinate system leaving the x- and y-axes no longer perpendicular,
while the recommended translate–rotate–scale ordering does not.

ty

tx

sy

sx

θ
β

α

PDF Reference Manual April 16, 1996 Chapter 3: Coordinate Systems

3.9 Transformation matrices 27

Figure 3.5 Effect of the order of transformations

3.9 Transformation matrices

This section describes the mathematics of transformation matrices, which is
identical to that underlying the PostScript language. It is not necessary to
read this section to use the transformations discussed in previous sections.

To understand coordinate system transformations in PDF, it is vital to
understand two points:

• Transformations in PDF alter coordinate systems, not objects. All objects
drawn before a transformation is specified are unchanged by the
transformation. Objects drawn after the transformation is specified will
be drawn in the transformed coordinate system.

• Transformation matrices in PDF specify the transformation from the
transformed (new) coordinate system to the untransformed (old)
coordinate system. All coordinates used after the transformation are
specified in the transformed coordinate system. PDF applies the
transformation matrix to determine the coordinates in the untransformed
coordinate system.

Original Step 1: Translate Step 2: Rotate Step 3: Scale

Original Step 1: Scale Step 2: Rotate Step 3: Translate

PDF Reference Manual April 16, 1996 Chapter 3: Coordinate Systems

28 Chapter 3: Coordinate Systems

Note Many computer graphics textbooks consider transformations of objects
instead of coordinate systems. Although these are formally equivalent, some
results differ depending on which point of view is taken.

PDF represents coordinates in a two-dimensional space. The point (x, y) in
such a space can be expressed in vector form as [x y 1]. Although the third
element of this vector (1) is not strictly necessary, it provides a convenient
way to specify translations of the coordinate system’s origin.

The transformation between two coordinate systems is represented by a 3×3
transformation matrix written as:

Note Because a transformation matrix has only six entries that may be changed,
for convenience it is often written as the six-element array [a b c d e f].

Coordinate transformations are expressed as:

Because PDF transformation matrices specify the conversion from the
transformed coordinate system to the original (untransformed) coordinate
system, x′ and y′ in this equation are the coordinates in the untransformed
coordinate system, while x and y are the coordinates in the transformed
system. Carrying out the multiplication, we have:

If a series of transformations is carried out, the transformation matrices
representing each of the transformations can be multiplied together to
produce a single equivalent transformation matrix.

Matrix multiplication is not commutative—the order in which matrices are
multiplied is significant. It is not a priori obvious in which order the
transformation matrices should be multiplied. Matrices representing later
transformations could either be multiplied before those representing earlier
transformations (premultiplied) or after (postmultiplied).

a b 0

c d 0

e f 1

x ′ y ′ 1 x y 1

a b 0

c d 0

e f 1

=

x ′ ax cy e+ +=

y ′ bx dy f+ +=

PDF Reference Manual April 16, 1996 Chapter 3: Coordinate Systems

3.9 Transformation matrices 29

To determine whether premultiplication or postmultiplication is appropriate,
consider a sequence of two transformations. Specifically, apply a scaling
transformation to the user space coordinate system, and consider the
conversion from this scaled coordinate system to device space. The two
transformation matrices in this example are the matrix specifying the
scaling (MS) and the matrix specifying the transformation from user space
to device space (the CTM, called MC here). Recalling that coordinates are
always specified in the transformed space, it is clear that the correct order of
transformations must first convert the scaled coordinates to those in default
user space, and then convert the default user space coordinates to device
space coordinates. This can be expressed:

where XD is the coordinate in device space and XU is the coordinate in
default user space. This shows that when a new transformation is added, the
matrix representing it must be premultiplied onto the existing
transformation matrix.

This result is true in general for PDF—when a sequence of transformations
is carried out, the matrix representing the combined transformation (M′) is
calculated by premultiplying the matrix representing the transformation
being added (MT) onto the matrix representing any existing transformations
(M):

XD XUMC XSMS()MC XS MSMC()= = =

M ′ MT M=

PDF Reference Manual April 16, 1996 Chapter 3: Coordinate Systems

30 Chapter 3: Coordinate Systems

PDF Reference Manual April 16, 1996 Chapter 4: Objects

31

CHAPTER 4

Objects

The object types supported by PDF are similar to the object types supported
by the PostScript language. Readers familiar with the PostScript language
may wish to skim this chapter, or skip parts of it, particularly Sections 4.2,
“Booleans,” through 4.7, “Dictionaries.”

4.1 Introduction

PDF supports seven basic types of objects: booleans, numbers, strings,
names, arrays, dictionaries, and streams. In addition, PDF provides a null
object. Objects may be labeled so that they can be referred to by other
objects. A labeled object is called an indirect object.

The following sections describe each object type and the null object. A
discussion of creating and referring to indirect objects in PDF files follows.

Note PDF is case-sensitive. Uppercase and lowercase letters are different.

4.2 Booleans

The keywords true and false represent boolean objects with values true
and false.

4.3 Numbers

PDF provides two types of numbers, integer and real. Integers may be
specified by signed or unsigned constants. Reals may only be in decimal
format. Throughout this book, number means an object whose type is either
integer or real.

Note Exponential format for numbers (such as 1.0E3) is not supported.

PDF Reference Manual April 16, 1996 Chapter 4: Objects

32 Chapter 4: Objects

4.4 Strings

A string is a sequence of characters delimited by parentheses. If a string is
too long to be conveniently placed on a single line, it may be split across
multiple lines by using the backslash (\) character at the end of a line to
indicate that the string continues on the following line. When this occurs,
the backslash and end-of-line characters are not considered part of the
string. Examples of strings are:

(This is string number 1?)

(strangeonium spectroscopy)

(This string is split \
 across \
three lines)

Within a string, the backslash character is used as an escape to specify
unbalanced parentheses, non-printing ASCII characters, and the backslash
character itself. This escape mechanism is the same as for PostScript
language strings, described in Section 3.2.2 of the PostScript Language
Reference Manual, Second Edition. Table 4.1 lists the escape sequences for
PDF.

Table 4.1 Escape sequences in strings

\n linefeed

\r carriage return

\t horizontal tab

\b backspace

\f formfeed

\\ backslash

\(left parenthesis

\) right parenthesis

\ddd character code ddd (octal)

PDF Reference Manual April 16, 1996 Chapter 4: Objects

4.4 Strings 33

Use of the \ddd escape sequence is the preferred way to represent characters
outside the printable ASCII character set, in order to minimize potential
problems transmitting or storing the characters. The number ddd may
contain one, two, or three octal digits. An example of a string with an octal
character in it is:

(string with \245two octal characters\307)

As in the PostScript language, strings may also be represented in
hexadecimal form. A hexadecimal string consists of a sequence of
hexadecimal characters (the digits 0–9 and the letters A–F or a–f) enclosed
within angle brackets (< and >). Each pair of hexadecimal digits defines one
character of the string. If the final digit of a given string is missing—in other
words, if there is an odd number of digits—the final digit is assumed to be
zero. Whitespace characters (space, tab, carriage return, linefeed, and
formfeed) are ignored. For example,

<901fa3>

is a three-character string consisting of the characters whose hexadecimal
codes are 90, 1f, and a3. But:

<901fa>

is a three-character string containing the characters whose hexadecimal
codes are 90, 1f, and a0.

In versions 1.1 and later, it is not necessary to represent strings using only
the printable 7-bit ASCII character set. In PDF 1.1, a non-printable ASCII
code—in fact, any 8-bit value—may appear in a string. In particular, when a
document is encrypted (see Section 5.7 on page 60), all its strings are
encrypted and often contain arbitrary 8-bit values. Note that the backslash
character is still required as an escape to specify unbalanced parentheses
and the backslash character itself.

Implementation note The Acrobat 1.0 viewers can read strings that include non-printable ASCII.

Strings can be used for many purposes and can be formatted in different
ways. When a string is used for a specific purpose, to represent a date, for
example, it is useful to have a standard format for that purpose. Such
formats are conventions for interpreting strings and are not types
themselves. The use of a particular format is indicated with the definition of
the string object that uses the format.

PDF Reference Manual April 16, 1996 Chapter 4: Objects

34 Chapter 4: Objects

PDF 1.1 defines a standard date format. The PDF date format closely
follows the format defined by the international standard ASN.1 (Abstract
Syntax Notation One, defined in CCITT X.208 or ISO/IEC 8824). A date is
a string of the form:

(D:YYYYMMDDHHmmSSOHH'mm')

where

• YYYY is the year.

• MM is the month (01–12).

• DD is the day (01–31).

• HH is the hour (00–23).

• mm are the minutes (00-59).

• SS are the seconds (00-59).

• O is the relation of local time to GMT, where + indicates that local time
is later than GMT, - indicates that local time is earlier than GMT, and Z
indicates that local time is GMT.

• HH is the absolute value of the offset from GMT in hours. The quote (')
is part of the syntax.

• mm is the absolute value of the offset from GMT in minutes. The quote
(') is part of the syntax.

Example:

D:199512231952-08’00’

The D: prefix permits arbitrary keys to be recognized as dates. However, it
is not required. Trailing fields other than the year are also optional. The
default value for day and month is 1; all other numerical fields default to 0.
If no GMT information is specified, the relationship of the specified time to
GMT is considered unknown. Whether the time zone is known or not, the
rest of the date should be specified in local time.

Implementation note The Acrobat 1.0 viewers report date strings as ordinary strings. The
Acrobat 2.0 viewers report date strings as dates when used as the value of
the CreationDate or ModDate in the Info dictionary or as the value of
the Date key in annotations. The 2.0 viewers ignore the GMT information.

PDF Reference Manual April 16, 1996 Chapter 4: Objects

4.5 Names 35

4.5 Names

A name, like a string, is a sequence of characters. It must begin with a slash
followed by a letter, followed by a sequence of characters. Names may
contain any characters except whitespace (linefeed, carriage return, space,
tab), %, (,), <, >, [,], {, and }. Examples of names are:

/Name1

/ASomewhatLongerName2

/A;Name_With-various***characters?.

4.6 Arrays

An array is a sequence of PDF objects. An array may contain a mixture of
object types. An array is represented as a left square bracket ([), followed
by a sequence of objects, followed by a right square bracket (]). An
example of an array is:

[0 (Higgs) false 3.14 3 549 /SomeName]

4.7 Dictionaries

A dictionary is an associative table containing pairs of objects. The first
element of each pair is called the key and the second element is called the
value. Unlike dictionaries in the PostScript language, a key must be a name.
A value can be any kind of object, including a dictionary. A dictionary is
generally used to collect and tie together the attributes of a complex object,
with each key–value pair specifying the name and value of an attribute.

A dictionary is represented by two left angle brackets (<<), followed by a
sequence of key–value pairs, followed by two right angle brackets (>>). For
example:

Example 4.1 Dictionary

<< /Type /Example /Key2 12 /Key3 (a string) >>

PDF Reference Manual April 16, 1996 Chapter 4: Objects

36 Chapter 4: Objects

Or, in an example of a dictionary within a dictionary:

Example 4.2 Dictionary within a dictionary

<< /Type /AlsoAnExample
 /Subtype /Bad

/Reason (unsure)
/Version 0.01
/MyInfo <<

/Item1 0.4
/Item2 true
/LastItem (not!)
/VeryLastItem (OK)

>>
>>

Dictionary objects are the main building blocks of a PDF document. Many
parts of a PDF document, such as pages and fonts, are represented using
dictionaries. By convention, the Type key of such a dictionary specifies the
type of object being described by the dictionary. Its value is always a name.
In some cases, the Subtype key is used to describe a specialization of a
particular type. Its value is always a name. For a font, Type is Font and
four subtypes exist: Type1, MMType1, Type3, and TrueType.

4.8 Streams

A stream, like a string, is a sequence of characters. However, an application
can read a small portion of a stream at a time, while a string must be read in
its entirety. For this reason, objects with potentially large amounts of data,
such as images and page descriptions, are represented as streams.

A stream consists of a dictionary that describes a sequence of characters,
followed by the keyword stream, followed by zero or more lines of
characters, followed by the keyword endstream.

<stream> ::= <dictionary>
stream
{<lines of characters>}*
endstream

PDF Reference Manual April 16, 1996 Chapter 4: Objects

4.8 Streams 37

PDF 1.1 is more restrictive than PDF 1.0 with respect to the specification of
stream objects. All streams must be indirect objects (see Section 4.10 on
page 48). The stream dictionary must be a direct object. The keyword
stream that follows the stream dictionary should be followed by a carriage
return and linefeed or just a linefeed.

Implementation note Without this restriction, it is not possible to differentiate a stream that uses
carriage return as end of line and whose first byte of data is a linefeed from
a stream that uses carriage return-linefeed pairs as end of line.

Table 4.2 shows the attributes of a stream.

Table 4.2 Stream attributes

Key Type Description

Length integer (Required) Number of characters from the first line after the line containing
the stream keyword to the endstream keyword.

Filter
name or array of names (Optional) Filters to be applied in processing the stream. The value of the

Filter key can be either the name of a single decode filter or an array of
filter names. Specify multiple filters in the order they should be applied to
decode the data. For example, data compressed using LZW and then ASCII
base-85 encoded can be decoded by providing the following key and value
in the stream dictionary:

/Filter [/ASCII85Decode /LZWDecode]

DecodeParms variable (Optional) Parameters used by the decoding filters specified with the Filter
key. The number and types of the parameters supplied must match those
needed by the specified filters. For example, if two filters are used, the
decode parameters must be specified by an array of two objects, one
corresponding to each filter. Use the null object for a filter’s entry in the
DecodeParms array if that filter does not need any parameters. If none of
the filters specified requires any parameters, omit the DecodeParms key.

Streams may be filtered to compress them or convert binary streams into
ASCII form. The standard PostScript Level 2 software decoding filters are
supported. These filters and their parameters are listed in Table 4.3 and
described in the following sections.

PDF Reference Manual April 16, 1996 Chapter 4: Objects

38 Chapter 4: Objects

Table 4.3 Standard filters

Filter name Parameters Semantics

ASCIIHexDecode none Decodes binary data in an ASCII hexadecimal representation

ASCII85Decode none Decodes binary data in an ASCII base-85 representation

LZWDecode dictionary (Parameters optional) Decompresses text or binary data using LZW
adaptive compression method

RunLengthDecode
none Decompresses binary data using a byte-oriented run-length decoding

algorithm

CCITTFaxDecode
dictionary (Parameters optional) Decompresses binary data using a bit-oriented

decoding algorithm, the CCITT facsimile standard

DCTDecode dictionary (Parameters optional) Decompresses sampled image data using a discrete
cosine transform technique based on the JPEG standard

Example 4.3 shows a stream that has been compressed using LZW and then
encoded using ASCII85, while Example 4.4 shows the same stream without
any encoding.

Example 4.3 Stream that has been LZW and ASCII85 encoded

<<
/Length 528
/Filter [/ASCII85Decode /LZWDecode]
>>
stream
J..)6T`?p&<!J9%_[umg"B7/Z7KNXbN'S+,*Q/&"OLT'FL
IDK#!n`$"<Atdi`\Vn%b%)&'cA*VnK\CJY(sF>c!Jnl@RM
]WM;jjH6Gnc75idkL5]+cPZKEBPWdR>FF(kj1_R%W_
d&/jS!;iuad7h?[L-F$+]]0A3Ck*$I0KZ?;<)CJtqi65XbVc3
\n5ua:Q/=0$W<#N3U;H,MQKqfg1?:lUpR;6oN[C2E4ZN
r8Udn.'p+?#X+1>0Kuk$bCDF/(3fL5]Oq)^kJZ!C2H1'TO]
Rl?Q:&'<5&iP!$Rq;BXRecDN[IJB`,)o8XJOSJ9sDS]hQ;R
j@!ND)bD_q&C\g:inYC%)&u#:u,M6Bm%IY!Kb1+":aAa'S
`ViJglLb8<W9k6Yl\\0McJQkDeLWdPN?9A'jX*al>iG1p&i;

PDF Reference Manual April 16, 1996 Chapter 4: Objects

4.8 Streams 39

eVoK&juJHs9%;Xomop"5KatWRT"JQ#qYuL,JD?M$0QP)
lKn06l1apKDC@\qJ4B!!(5m+j.7F790m(Vj8l8Q:_CZ(Gm1
%X\N1&u!FKHMB~>
endstream

Example 4.4 Unencoded stream

<<
/Length 558
>>
stream
2 J
BT
/F1 12 Tf
0 Tc 0 Tw 72.5 712 TD
[(Unencoded streams can be read easily)65 (,)] TJ
0 -14 TD
[(b)20 (ut generally tak)10 (e more space than \311)] TJ
T* (encoded streams.)Tj
0 -28 TD
[(Se)25 (v)15 (eral encoding methods are a)20 (v)25
(ailable in PDF)80 (.)] TJ
0 -14 TD
(Some are used for compression and others simply)Tj
T* [(to represent binary data in an)55 (ASCII format.)] TJ
T* (Some of the compression encoding methods are suitable)Tj
T* (for both data and images, while others are suitable only)Tj
T* (for continuous-tone images.)Tj
ET
endstream

4.8.1 ASCIIHexDecode filter

This filter decodes data that has been encoded as ASCII hexadecimal.
ASCII hexadecimal encoding and ASCII base-85 encoding (described in the
following section) convert binary data such as images to the 7-bit data
required in PDF files. In general, ASCII base-85 encoding is preferred
because it is more compact.

ASCII hexadecimal encoding produces a 1:2 expansion in the size of the
data. Each pair of ASCII hexadecimal digits (0–9 and A–F or a–f) produces
one byte of binary data. All white-space characters are ignored. The right

PDF Reference Manual April 16, 1996 Chapter 4: Objects

40 Chapter 4: Objects

angle bracket (>) indicates the end of data (EOD). Any other character
causes an error. If the filter encounters the EOD marker after reading an odd
number of hexadecimal digits, it behaves as if a zero followed the last digit.

4.8.2 ASCII85Decode filter

This filter decodes data that has been encoded in the ASCII base-85
encoding and produces binary data.

ASCII base-85 encoding produces five ASCII printing characters from
every four bytes of binary data. Each group of four binary bytes (b1 b2 b3 b4)
is converted to a group of five encoded characters (c1 c2 c3 c4 c5) using the
relation:

The five “digits” of the encoded base-85 number are converted to printable
ASCII characters by adding 33 (the ASCII code for !) to each. The resulting
data contains only printable ASCII characters with codes in the range 33 (!)
to 117 (u).

Two special cases occur during encoding. First, if all five encoded digits are
zero, they are represented by the character code 122 (z), instead of by a
series of four exclamation points (!!!!). In addition, if the length of the
binary data to be encoded is not a multiple of four bytes, the last partial 4-
tuple is used to produce a last, partial output 5-tuple. Given n (1, 2, or 3)
bytes of binary data, the encoding first appends 4 − n zero bytes to make a
complete 4-tuple. This 4-tuple is encoded in the usual way, but without
applying the special z case. Finally, only the first n + 1 characters of the
resulting 5-tuple are written out. Those characters are immediately followed
by the EOD marker, which is the two-character sequence ~>.

The following conditions are errors during decoding:

• The value represented by a 5-tuple is greater than 232 − 1.

• A z character occurs in the middle of a 5-tuple.

• A final partial 5-tuple contains only one character.

These conditions never occur in the output produced from a correctly
encoded byte sequence.

b1 256
3×() b2 256

2×() b3 256×() b4=+ + +

c1 85
4×() c2 85

3×() c3 85
2×() c4 85×() c5+ + + +

PDF Reference Manual April 16, 1996 Chapter 4: Objects

4.8 Streams 41

4.8.3 LZWDecode filter

This filter decodes data encoded using the LZW data compression method,
which is a variable-length, adaptive compression method. LZW encoding
compresses binary and ASCII text data but always produces binary data,
even if the original data was ASCII text. This binary data, in turn, must be
converted to 7-bit data using either the ASCII hexadecimal or ASCII base-
85 encodings described in previous sections.

LZW compression can discover and exploit many patterns in its input data,
whether that input is text or image data. The compression obtained using the
LZW method varies from file to file; the best case (a file of all zeroes)
provides a compression approaching 1365:1 for long files, while the worst
case (a file in which no pair of adjacent characters appears twice) can
produce an expansion of approximately 50%.

Data encoded using LZW consist of a sequence of codes that are 9 to 12 bits
long. Each code represents a single character of input data (0–255), a clear-
table marker (256), an EOD marker (257), or a table entry representing a
multi-character sequence that has been encountered previously in the input
(258 and greater).

Initially, the code length is 9 bits and the table contains only entries for the
258 fixed codes. As encoding proceeds, entries are appended to the table,
associating new codes with longer and longer input character sequences.
The encoding and decoding filters maintain identical copies of this table.

Whenever both encoder and decoder independently (but synchronously)
realize that the current code length is no longer sufficient to represent the
number of entries in the table, they increase the number of bits per code by
one. The first output code that is 10 bits long is the one following creation of
table entry 511, and so on for 11 (1023) and 12 (2047) bits. Codes are never
longer than 12 bits, so entry 4095 is the last entry of the LZW table.

The encoder executes the following sequence of steps to generate each
output code:

1. Accumulate a sequence of one or more input characters matching a
sequence already present in the table. For maximum compression,
the encoder looks for the longest such sequence.

2. Output the code corresponding to that sequence.

3. Create a new table entry for the first unused code. Its value is the
sequence found in step 1 followed by the next input character.

PDF Reference Manual April 16, 1996 Chapter 4: Objects

42 Chapter 4: Objects

To adapt to changing input sequences, the encoder may at any point issue a
clear-table code, which causes both the encoder and decoder to restart with
initial tables and a 9-bit code. By convention, the encoder begins by issuing
a clear-table code. It must issue a clear-table code when the table becomes
full; it may do so sooner.

The LZW filter can be used to compress text or images. When compressing
images, several techniques reduce the size of the resulting compressed data.
For example, image data frequently change very little from sample to
sample. By subtracting the values of adjacent samples (a process called
differencing) and LZW-encoding the difference rather than the raw sample
values, the size of the output data may be reduced. Further, when the image
data contains several color components (red–green–blue or cyan–magenta–
yellow–black) per sample, taking the difference between the values of like
components in adjacent samples, rather than between different color
components in the same sample, often reduces the output data size. In order
to control these and other options, the LZW filter accepts several optional
parameters, shown in Table 4.4. All values supplied to the decode filter by
any optional parameters must match those used when the data was encoded.

PDF Reference Manual April 16, 1996 Chapter 4: Objects

4.8 Streams 43

Table 4.4 Optional parameters for LZW filter

Key Type Semantics

Predictor integer If Predictor is 1, the file is decoded assuming that it was encoded using the
normal LZW algorithm. If Predictor is 2, decoding is performed assuming
that prior to encoding, the data was differenced. The default value is 1.

Columns integer Only has an effect if Predictor is 2. Columns is the number of samples in
a sampled row. The first sample in each row is not differenced; all
subsequent samples in a row are differenced with the prior sample. Each
row begins on a byte boundary. Any extra bits needed to complete a byte at
the end of a row (Columns × Colors × BitsPerComponent) are not
differenced. The default value is 1.

Colors integer Only has an effect if Predictor is 2. Number of interleaved color
components per sample in a sampled image. Each color component is
differenced with the value of the same color component in the previous
sample. Allowed values are 1, 2, 3, and 4. The default value is 1.

BitsPerComponent
integer Only has an effect if Predictor is 2. BitsPerComponent is the number

of bits used to represent each color component in a pixel. Allowed values
are 1, 2, 4, and 8. The default value is 8.

EarlyChange integer If EarlyChange is 0, code word length increases are postponed as long as
possible. If it is 1, they occur one code word early. The value of
EarlyChange used in decoding must match that used during encoding.
This parameter is included because LZW sample code distributed by some
vendors increases the code word length one word earlier than necessary.
The default value is 1.

The LZW compression method is the subject of United States patent
number 4,558,302 owned by the Unisys Corporation. Adobe Systems has
licensed this patent for use in its products, including Acrobat products.
However, independent software vendors may be required to license this
patent directly from Unisys to develop software using LZW. Further
information can be obtained from Welch Licensing Department, Law
Department, M/S C2SW1, Unisys Corporation, Blue Bell, Pennsylvania,
19424.

PDF Reference Manual April 16, 1996 Chapter 4: Objects

44 Chapter 4: Objects

4.8.4 RunLengthDecode filter

This filter decodes data that has been encoded in a simple byte-oriented,
run-length-encoded format. Run-length encoding produces binary data
(even if the original data was ASCII text) that must be converted to 7-bit
data using either the ASCII hexadecimal or ASCII base-85 encodings
described in previous sections.

The compression achieved by run-length encoding depends on the input
data. In the best case, a file of all zeroes, a compression of approximately
64:1 is achieved for long files. The worst case, the hexadecimal sequence of
alternating 00 FF 00 FF, results in an expansion of 127:128.

The encoded data is a sequence of runs, where each run consists of a length
byte followed by 1 to 128 bytes of data. If length is in the range 0 to 127, the
following length + 1 (1 to 128 bytes) are copied literally during
decompression. If length is in the range 129 to 255, the following single
byte is to be copied 257 − length times (2 to 128 times) during
decompression. The value 128 is placed at the end of the compressed data,
as an EOD marker.

4.8.5 CCITTFaxDecode filter

This filter decodes image data that has been encoded using either Group 3
or Group 4 CCITT facsimile (fax) encoding. This filter is only useful for
bitmap image data, not for color images, grayscale images, or text. Group 3
and Group 4 CCITT encoding produces binary data that must be converted
to 7-bit data using either the ASCII hexadecimal or ASCII base-85
encodings, described in previous sections.

The compression achieved using CCITT compression depends on the data,
as well as on the value of various optional parameters. For Group 3 one-
dimensional encoding, the best case is a file of all zeroes. In this case, each
scan line compresses to 4 bytes, and the compression factor depends on the
length of a scan line. If the scan line is 300 bytes long, a compression ratio
of approximately 75:1 is achieved. The worst case, an image of alternating
ones and zeroes, produces an expansion of 2:9.

CCITT encoding is defined by an international standards organization, the
International Coordinating Committee for Telephony and Telegraphy
(CCITT). The encoding is designed to achieve efficient compression of
monochrome (1 bit per sample) image data at relatively low resolutions. The
algorithm is not described in detail here, but can be found in the CCITT
standards, [10] and [11], listed in the Bibliography on page 280.

PDF Reference Manual April 16, 1996 Chapter 4: Objects

4.8 Streams 45

The fax encoding method is bit-oriented, rather than byte-oriented. This
means that, in principle, encoded or decoded data may not end on a byte
boundary. The filter addresses this in the following ways:

• Encoded data are ordinarily treated as a continuous, unbroken bit stream.
However, the EncodedByteAlign parameter (described in Table 4.5)
can be used to cause each encoded scan line to be filled to a byte
boundary. Although this is not prescribed by the CCITT standard and fax
machines don’t do this, some software packages find it convenient to
encode data this way.

• When a filter reaches EOD, it always skips to the next byte boundary
following the encoded data.

Both Group 3 and Group 4 encoding, as well as optional features of the
CCITT standard, are supported. The optional parameters that can be used to
control the decoding are listed in Table 4.5. Except as noted, all values
supplied to the decode filter by the optional parameters must match those
used when the data was encoded.

Table 4.5 Optional parameters for CCITTFaxDecode filter

Key Type Semantics

K integer Selects the encoding scheme used. A negative value indicates pure two-
dimensional (Group 4) encoding. Zero indicates pure one-dimensional
(Group 3, 1-D) encoding. A positive value indicates mixed one- and two-
dimensional encoding (Group 3, 2-D) in which a line encoded one-
dimensionally can be followed by at most K − 1 lines encoded two-
dimensionally. The decoding filter distinguishes between negative, zero, and
positive values of K, but does not distinguish between different positive K
values. The default value is 0.

EndOfLine boolean End-of-line bit patterns are always accepted but required if EndOfLine is
true. The default value is false.

EncodedByteAlign
boolean If true, each encoded line must begin on a byte boundary. The default value

is false.

Columns integer Specifies the width of the image in samples. If Columns is not a multiple
of 8, the width of the unencoded image is adjusted to the next multiple of 8,
so that each line starts on a byte boundary. The default value is 1728.

PDF Reference Manual April 16, 1996 Chapter 4: Objects

46 Chapter 4: Objects

Rows integer Specifies the height of the image in scan lines. If this parameter is zero or is
absent, the height of the image is not predetermined and the encoded data
must be terminated by an end-of-block bit pattern or by the end of the
filter’s data source. The default value is 0.

EndOfBlock boolean If true, the data is expected to be terminated by an end-of-block, overriding
the Rows parameter. If false, decoding stops when Rows lines have been
decoded or when the data has been exhausted, whichever occurs first. The
end-of-block pattern is the CCITT end-of-facsimile-block (EOFB) or
return-to-control (RTC) appropriate for the K parameter. The default value
is true.

Blackls1 boolean If true, causes bits with value 1 to be interpreted as black pixels and bits
with value zero to be interpreted as white pixels. The default value is false.

DamagedRowsBeforeError
integer If DamagedRowsBeforeError is positive, EndOfLine is true, and K is

non-negative, then up to DamagedRowsBeforeError rows of data will
be tolerated before an error is generated. Tolerating a damaged row means
locating its end in the encoded data by searching for an EndOfLine
pattern, and then substituting decoded data from the previous row if the
previous row was not damaged or a white scan line if the previous row was
damaged. The default value is 0.

4.8.6 DCTDecode filter

This filter decodes grayscale or color image data that has been encoded in
the JPEG baseline format. JPEG encoding produces binary data; unless it is
used in binary PDF file, it must be converted to 7-bit data using either the
ASCII hexadecimal or ASCII base-85 encodings described in previous
sections.

JPEG is a lossy compression method, meaning that some of the information
present in the original image is lost when the image is encoded. Because of
the information loss, only images (never text) should be encoded in this
format. The compression achieved using the JPEG algorithm depends on
the image being compressed and the amount of loss that is acceptable. In
general, a compression of 15:1 can be achieved without a perceptible loss of
information, and 30:1 compression causes little impairment of the image.

PDF Reference Manual April 16, 1996 Chapter 4: Objects

4.9 The null object 47

During encoding, several optional parameters control the algorithm and the
information loss. The values of these parameters are stored in the encoded
data, and the decoding filter generally obtains the parameter values it
requires directly from the encoded data. A description of the parameters
accepted by the encoding filter can be found in Section 3.13.3 of the
PostScript Language Reference Manual, Second Edition.

JPEG stands for the ISO/CCITT Joint Photographic Experts Group, an
organization responsible for developing an international standard for
compression of color image data. The encoding method uses the discrete
cosine transform (DCT). Data to be encoded consists of a stream of image
samples, each containing one, two, three, or four color components. The
color component values for a particular sample must appear consecutively.
Each component value occupies an 8-bit byte.

The details of the encoding algorithm are not presented here but can be
found in the references [15] and [18] listed in the Bibliography on page 279.
Briefly, the JPEG algorithm breaks an image up into blocks of 8×8 samples.
Each color component in an image is treated separately. A two-dimensional
DCT is performed on each block. This operation produces 64 coefficients,
which are then quantized. Each coefficient may be quantized with a
different step size. It is the quantization that results in the loss of
information in the JPEG algorithm. The quantized coefficients are then
compressed.

The amount of loss incurred in JPEG encoding is controlled by the
encoding filter, which can reduce the loss by making the step size in the
quantization smaller at the expense of reducing the amount of compression
achieved by the algorithm. The JPEG filter implementation in the Acrobat
products does not support features of the JPEG standard that are not
relevant. In addition, certain choices regarding reserved marker codes and
other optional features of the standard have been made.

4.9 The null object

The keyword null represents the null object.

Note The value of a dictionary key can be specified as null. A simpler but
equivalent way to express this is to omit the key from the dictionary.

PDF Reference Manual April 16, 1996 Chapter 4: Objects

48 Chapter 4: Objects

4.10 Indirect objects

A direct object is a boolean, number, string, name, array, dictionary, stream,
or null, as described in the previous sections. An indirect object is an object
that has been labeled so that it can be referenced by other objects. Any type
of object may be labeled as an indirect object. Indirect objects are very
useful; for example, if the length of a stream is not known before it is
written, the value of the stream’s Length key may be specified as an
indirect object that is stored in the file after the stream.

An indirect object consists of an object identifier, a direct object, and the
endobj keyword. The object identifier consists of an integer object number,
an integer generation number, and the obj keyword:

<indirect object> ::=
<object ID>
<direct object>
endobj

<object ID> ::= <object number>
<generation number>
obj

The combination of object number and generation number serves as a
unique identifier for an indirect object. Throughout its existence, an indirect
object retains the object number and generation number it was initially
assigned, even if the object is modified.

Each indirect object has a unique object number, and indirect objects are
often but not necessarily numbered sequentially in the file, beginning with
1. Until an object in the file is deleted, all generation numbers are 0.

4.11 Object references

Any object used as an element of an array or as a value in a dictionary may
be specified by either a direct object or an indirect reference. An indirect
reference is a reference to an indirect object, and consists of the indirect
object’s object number, generation number, and the R keyword:

<indirect reference> ::=
<object number>
<generation number>
R

PDF Reference Manual April 16, 1996 Chapter 4: Objects

4.11 Object references 49

Using an indirect reference to the stream’s length, a stream could be written
in this way:

Example 4.5 Indirect reference

7 0 obj
<<
/Length 8 0 R
>>
stream
BT
/F1 12 Tf
72 712 Td (A stream with an indirect Length) Tj
ET
endstream
endobj
8 0 obj
64
endobj

Note An indirect reference to an undefined object is not an error; it is treated as a
reference to the null object. For example, if a PDF file contains the indirect
reference “12 0 R” but does not contain the definition,
“12 0 obj ... endobj”, then the indirect reference is null.

PDF 1.1 defines links to external files but does not define how to refer to
objects in other PDF files. It is planned that a future version of PDF will
define foreign references. In PDF 1.1, only a format for such references is
reserved. A foreign reference is an indirect reference to an indirect object in
another file, and consists of the foreign file number, the indirect object’s
object number, its generation number, and the F keyword:

<foreign reference> ::=
<file number>
<object number>
<generation number>
F

A file number is a non-negative integer, but PDF 1.1 does not define its
interpretation. To be compatible with future versions of PDF, PDF 1.1
consumers should treat all foreign references as null objects.

PDF Reference Manual April 16, 1996 Chapter 4: Objects

50 Chapter 4: Objects

PDF Reference Manual April 16, 1996 Chapter 5: File Structure

51

CHAPTER 5

File Structure

This chapter describes the overall organization of a PDF file. A PDF file
provides a structure that represents a document. This structure provides a
way to rapidly access any part of a document and a mechanism for updating
it.

The body of a PDF file contains a sequence of PDF objects that are used to
construct a document. Chapter 4 describes the types of objects supported by
PDF. Chapter 6 explains the way a document is constructed using these
object types.

5.1 Introduction

A canonical PDF file consists of four sections: a one-line header, a body, a
cross-reference table, and a trailer. Figure 5.1 shows this structure:

<PDF file> ::= <header>
<body>
<cross-reference table>
<trailer>

In a PDF 1.0 file, all information is represented in 7-bit ASCII. Binary data
must be encoded in ASCII; ASCII hexadecimal and ASCII base-85 are
supported. No line in a PDF 1.0 file may be longer than 255 characters. A
line in a file is delimited by a carriage return (ASCII value 13), a linefeed
(ASCII value 10), or a carriage return followed by a linefeed. Updates may
be appended to a PDF file, as described in Section 5.6, “Incremental
update."

Because the requirement to use ASCII does not guarantee file transmission
transparency, and because it can cause a 20% expansion in the size of
objects such as images that are naturally binary data, PDF 1.1 relaxes this
requirement. PDF 1.1 allows files to contain binary data in strings, streams,

PDF Reference Manual April 16, 1996 Chapter 5: File Structure

52 Chapter 5: File Structure

and comments. In fact, experiments have shown that PDF files are less
likely to be corrupted by system utilities if they do contain binary data. It is,
therefore, recommended that the second line of a PDF file be a comment
that contains at least four binary characters.

To accommodate binary data, the restriction on line length is also relaxed in
PDF 1.1. PDF 1.1 files with binary data may have arbitrarily long lines.
However, to increase compatibility with other applications that process PDF
files, all lines that are not part of stream object data shall be no longer than
255 characters.

Implementation note The Acrobat 1.0 viewers successfully read files that contain binary data.
The restriction on line length is not enforced by any Acrobat viewer.

Implementation note The Acrobat 1.0 products on the Apple® Macintosh® computer create files
with type 'TEXT'. Acrobat 2.0 products create files with type 'PDF '. A user
can open these documents from a 1.0 viewer but not from the Finder.

Header

Body

Cross-reference

table

Trailer

Figure 5.1 Structure of a PDF file that has not been updated

PDF Reference Manual April 16, 1996 Chapter 5: File Structure

5.2 Header 53

5.2 Header

The first line of a PDF file specifies the version number of the PDF
specification to which the file adheres. The current version is 1.1; the first
line of a 1.1-conforming PDF file should be %PDF-1.1. However, a 1.0-
conforming file is also a 1.1-conforming file and may begin with either
%PDF-1.1 or %PDF-1.0.

<header> ::= <PDF version>

5.3 Body

The body of a PDF file consists of a sequence of indirect objects
representing a document. The objects, which are of the basic types
described in Chapter 4, represent components of the document such as
fonts, pages, and sampled images.

Comments can appear anywhere in the body section of a PDF file.
Comments have the same syntax as those in the PostScript language; they
begin with a % character and may start at any point on a line. All text
between the % character and the end of the line is treated as a comment.
Occurrences of the % character within strings are not treated as comments.

5.4 Cross-reference table

The cross-reference table contains information that permits random access
to indirect objects in the file, so that the entire file need not be read to locate
any particular object. For each indirect object in the file, the table contains a
one-line entry describing the location of the object in the file.

A PDF file contains one cross-reference table, consisting of one or more
sections. If no updates have been appended to the file, the cross-reference
table contains a single section. One section is added each time updates are
appended to the file.

The cross-reference section is the only part of a PDF file with a fixed
format. This permits random access to entries in the cross-reference table.
The section begins with a line containing the keyword xref. Following this
line are one or more cross-reference subsections:

<cross-reference section> ::=
xref
<cross-reference subsection>+

PDF Reference Manual April 16, 1996 Chapter 5: File Structure

54 Chapter 5: File Structure

Each subsection contains entries for a contiguous range of object numbers.
The organization of the cross-reference section into subsections is useful for
incremental updates, because it allows a new cross-reference section to be
added to the PDF file, containing entries only for objects that have been
added or deleted. Each cross-reference subsection begins with a header line
containing two numbers: the first object number in that subsection and the
number of entries in the subsection. Following the header are the entries,
one per line:

<cross-reference subsection> ::=
<object number of first entry in subsection>
<number of entries in subsection>
<cross-reference entry>+

Each entry is exactly 20 characters long, including the end-of-line marker.
There are two formats for cross-reference table entries: one for objects that
are in use and another for objects that have been deleted and so are free:

<cross-reference entry> ::=
<in-use entry> |
<free entry>

For an object that is in use, the entry contains a byte offset specifying the
number of bytes from the beginning of the file to the beginning of the
object, the generation number of the object, and the n keyword:

<in-use entry> ::=
<byte offset> <generation number> n

The byte offset is a ten-digit number, padded with leading zeros if
necessary. It is separated from the generation number by a single space. The
generation number is a five-digit number, also padded with leading zeros if
necessary. Following the generation number is a single space and the n
keyword. Following the keyword is the end-of-line sequence. If the end-of-
line is a single character (either a carriage return or linefeed), it is preceded
by a single space. If the end-of-line sequence is two characters (a carriage
return followed by a linefeed), it is not preceded by a space.

PDF Reference Manual April 16, 1996 Chapter 5: File Structure

5.4 Cross-reference table 55

For an object that is free, the entry contains the object number of the next
free object, a generation number, and the f keyword:

<free entry> ::=
<object number of next free object>
<generation number> f

The entry has the same format as that for an object that is in use: a ten-digit
object number, a space, a five-digit generation number, a space, the f
keyword, and an end-of-line sequence.

The free objects in the cross-reference table form a linked list, with the
entry for each free object containing the object number of the next free
object. The first entry in the table (object number 0) is always free and has a
generation number of 65535. It is the head of the linked list of free objects.
The last free entry in the cross-reference table (the tail of the linked list)
uses 0 as the object number of the next free object.

When an indirect object is deleted, its cross-reference entry is marked free,
and the generation number in the entry is incremented by one to record the
generation number to be used the next time an object with that object
number is created. Each time the entry is reused, its generation number is
incremented. The maximum generation number is 65535. Once that number
is reached, that entry in the cross-reference table will not be reused.

Example 5.1 shows a cross-reference section containing a single subsection
with six entries; four that are in use (object numbers 1, 2, 4, and 5) and two
that are free (object numbers 0 and 3). Object number 3 has been deleted,
and the next object created with an object number of 3 will be given the
generation number of 7.

Example 5.1 Cross-reference section with a single subsection

xref
0 6
0000000003 65535 f
0000000017 00000 n
0000000081 00000 n
0000000000 00007 f
0000000331 00000 n
0000000409 00000 n

PDF Reference Manual April 16, 1996 Chapter 5: File Structure

56 Chapter 5: File Structure

Example 5.2 shows a cross-reference section with four subsections
containing a total of five entries. The first subsection contains one entry, for
object number 0, which is free. The second subsection contains one entry,
for object number 3, which is in use. The third subsection contains two
entries, for objects number 23 and 24, both of which are in use. Object
number 23 has been reused, as can be seen from the fact that it has a
generation number of 2. The fourth subsection contains one entry, for object
number 30, which is in use.

Example 5.2 Cross-reference section with multiple subsections

xref
0 1
0000000000 65535 f
3 1
0000025325 00000 n
23 2
0000025518 00002 n
0000025635 00000 n
30 1
0000025777 00000 n

Appendix A contains a more extensive example of the structure of a PDF
file after several updates have been made to it.

5.5 Trailer

The trailer enables an application reading a PDF file to quickly find the
cross-reference table and certain special objects. Applications should read a
PDF file from its end. The last line of a PDF file contains the end-of-file
marker, %%EOF. The two preceding lines contain the keyword startxref
and the byte offset from the beginning of the file to the beginning of the
word xref in the last cross-reference section in the file. The trailer
dictionary precedes this line.

PDF Reference Manual April 16, 1996 Chapter 5: File Structure

5.5 Trailer 57

The trailer dictionary, shown in Table 5.1, consists of the keyword trailer
followed by a set of key–value pairs enclosed in double angle brackets:

<trailer> ::= trailer
<<
<trailer key–value pair>+
>>
startxref
<cross-reference table start address>
%%EOF

Table 5.1 Trailer attributes

Key Type Semantics

Size integer (Required) Total number of entries in the file’s cross-reference table,
including the original table and all updates.

Prev integer (Present only if the file has more than one cross-reference section) Byte
offset from the beginning of file to the location of the previous cross-
reference section. If the file has never been updated, it will not contain the
Prev key.

Root dictionary (Required; must be indirect reference) Catalog object for the document,
described in Section 6.2, “Catalog.”

Info dictionary (Optional; must be indirect reference) Info dictionary for the document,
described in Section 6.9, “Info dictionary.”

ID array (Optional) An array of two strings, each of which is an ID. The first ID is
established when the file is created and the second ID is changed each time
the file is updated. IDs are described in Section 6.11, “File ID.”

Encrypt dictionary (Required if document is encrypted) Information used to decrypt a
document, described in Section 6.12, “Encryption dictionary.”

An example trailer for a file that has not been updated is shown in Example
5.3. The fact that the file has not been updated is determined from the
absence of a Prev key in the trailer dictionary.

PDF Reference Manual April 16, 1996 Chapter 5: File Structure

58 Chapter 5: File Structure

Example 5.3 Trailer

trailer
<<
/Size 22
/Root 2 0 R
/Info 1 0 R
>>
startxref
18799
%%EOF

5.6 Incremental update

The contents of a PDF file can be updated without rewriting the entire file.
Changes can be appended to the end of the file, leaving completely intact
the original contents of the file. When a PDF file is updated, any new or
changed objects are appended, a cross-reference section is added, and a new
trailer is inserted. The resulting file has the structure shown in Figure 5.2:

<Updated PDF file> ::=
<PDF file>
{<update>}*

<update> ::= <body>
<cross-reference section>
<trailer>

A complete example of an updated file is shown in Appendix A.

The cross-reference section added when a PDF file is updated contains
entries only for objects that have been changed, replaced, or deleted, plus
the entry for object 0. Deleted objects are left unchanged in the file, but are
marked as deleted in their cross-reference entries. The trailer that is added
contains all the information in the previous trailer, as well as a Prev key
specifying the location of the previous cross-reference section. As shown in
Figure 5.2, after a file has been updated several times it contains several
trailers, as well as several %%EOF lines.

Because updates are appended to PDF files, it is possible to end up with
several copies of an object with the same object ID (object number and
generation number) in a file. This occurs, for example, if a text annotation is
changed several times, with the file being saved between changes. Because

PDF Reference Manual April 16, 1996 Chapter 5: File Structure

5.6 Incremental update 59

the text annotation object is not deleted, it retains the same object number
and generation number. Because it has been changed, however, an updated
copy of the object is included in the update section added to the file. The
cross-reference section added includes a pointer to this new changed
version, overriding the information contained in the original cross-reference
section. When the file is read, cross-reference information is built in such a
way that the most recent version of an object is accessed in the file.

Figure 5.2 Structure of a PDF file after changes have been appended
several times

Header

Original

body

Original

cross-reference

section

Updated trailer n

Body update 1

Cross-reference

section 1

Body update n

Cross-reference

section n

Original trailer

Updated trailer 1

PDF Reference Manual April 16, 1996 Chapter 5: File Structure

60 Chapter 5: File Structure

5.7 Encryption

Documents can be encrypted to protect their content from unauthorized
access. Access to a protected document’s content is controlled by the
security handler specified in the Encrypt dictionary. The Encrypt dictionary
is the value of the Encrypt key in the trailer dictionary. Section 6.12,
“Encryption dictionary,” describes the Encrypt dictionary and security
handlers.

Implementation note On opening a protected document, a version 1.0 Acrobat viewer will report
that an error was found while processing a page. A version 2.0 Acrobat
viewer will report that a plug-in is required to open the document if the
security handler for the document is not available.

All strings and streams in a protected document’s visible content (page
content, bookmarks, and text annotation contents) are encrypted. Other data
types (such as integers and booleans) that are used primarily for structural
information in a PDF file, are not encrypted. This combination protects a
document’s visible content, while allowing an application to navigate a PDF
file’s structure quickly.

All strings and streams in a protected document, except those in the Encrypt
dictionary, are encrypted using the RC4 encryption algorithm. This prevents
unauthorized users from simply removing the password from a PDF file to
gain access to it. Strings in the Encrypt dictionary must be encrypted and
decrypted by the security handler itself, using whatever encryption
algorithm it chooses.

Streams are encrypted after all stream encoding filters have been applied
(and are decrypted before the stream decoding filters are applied).
Decryption of strings, other than those in the Encrypt dictionary, is done
after escape-sequence processing and hex decoding as appropriate to the
string representation described in Section 4.4, “Strings.”

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

61

CHAPTER 6

Document Structure

PDF provides an electronic representation of a document—a series of pages
containing text, graphics, and images, along with other information such as
thumbnails (miniature images of the pages), text annotations, hypertext
links, and outline entries (also called bookmarks). Previous chapters lay the
groundwork for understanding the PDF representation of a document, but
do not describe the representation itself. Chapter 3 presents the coordinate
systems that provide the supports on which the visible part of a PDF
document depends. Chapter 4 explains the types of objects supported by
PDF. Document components used in PDF are built from those objects.
Chapter 5 describes the overall structure of a PDF file, which provides the
framework necessary to organize the pieces of a document, move rapidly
among the pages of a document, and update a document.

The body of a PDF file consists of a sequence of objects that collectively
represent a PDF document. This chapter focuses exclusively on the contents
of the body section of a PDF file and contains a description of each type of
object that may be contained in a PDF document. Following each
description is an example showing the object as it might appear in a PDF
file. Complete example PDF files appear in Appendix A.

6.1 Introduction

A PDF document can be described as a hierarchy of objects contained in the
body section of a PDF file. Figure 6.1 shows the structure of a PDF
document. Most objects in this hierarchy are dictionaries. Parent, child, and
sibling relationships are represented by key–value pairs whose values are
indirect references to parent, child, or sibling objects. For example, the
Catalog object, which is the root of the hierarchy, contains a Pages key
whose value is an indirect reference to the object that is the root of the Pages
tree.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

62 Chapter 6: Document Structure

Each page of the document includes references to its imageable contents, its
thumbnail, and any annotations that appear on the page. The PDF file’s
standard trailer, described in Section 5.5, “Trailer,” specifies the location of

Figure 6.1 Structure of a PDF document

Catalog

Pages
tree

Outline
entry

Article
threads

Named
destinations

Outline
tree

Page

Imageable
content

Thumbnail

Annotations

Page

Outline
entry

•
•
•

•
•
•

•
•
••

•
•

Bead

Bead

Thread

Thread

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.2 Catalog 63

the Catalog object as the value of the trailer’s Root key. In addition, the
trailer specifies the location of the document’s Info dictionary, a structure
that contains general information about the document, as the value of the
trailer’s Info key.

Note In many of the tables in this chapter, certain key–value pairs contain the
notation “must be an indirect reference” or “indirect reference preferred.”
Unless one of these is specified in the description of the key–value pair,
objects that are the value of a key can either be specified directly or using
an indirect reference, as described in Section 4.11, “Object references.”

6.2 Catalog

The Catalog is a dictionary that is the root node of the document. It contains
a reference to the tree of pages contained in the document, a reference to the
tree of objects representing the document’s outline, a reference to the
document’s article threads, and the list of named destinations. In addition,
the Catalog indicates whether the document’s outline or thumbnail page
images should be displayed automatically when the document is viewed and
whether some location other than the first page should be shown when the
document is opened. Example 6.1 shows a sample Catalog object.

Example 6.1 Catalog

1 0 obj
<<
/Type /Catalog
/Pages 2 0 R
/Outlines 3 0 R
/PageMode /UseOutlines
>>
endobj

Table 6.1 shows the attributes for a Catalog.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

64 Chapter 6: Document Structure

Table 6.1 Catalog attributes

Key Type Semantics

Type name (Required) Object type. Always Catalog.

Pages dictionary (Required, must be an indirect reference) Pages object that is the root of the
document’s Pages tree.

Outlines dictionary (Required if the document has an outline; must be an indirect reference)
The Outlines object that is the root of the document’s outline tree, described
in Section 6.7, “Outline tree.”

PageMode name (Optional) How the document should appear when opened. Allowed values:

UseNone Open document with neither outline nor thumbnails visible
UseOutlines Open document with outline visible
UseThumbs Open document with thumbnails visible
FullScreen Open document in full-screen mode; in full-screen mode,

there is no menu bar, window controls, nor any other
window present.

The default value of PageMode is UseNone.

OpenAction
array or dictionary (Optional) Any legal action, as described in Section 6.6.3, “Destinations.” If

the value of this key is an array, it must be a destination. If it is a dictionary,
it must be an action. If no action is specified, the top of the first page will
appear at default zoom.

Threads array (Required if the document has any threads; must be an indirect reference)
An array of threads as described in Section 6.10, “Articles."

Dests dictionary (Required if the document has named destinations; must be an indirect
reference) A dictionary of names and corresponding destinations; see
Section 6.6.4, “Named destinations.”

URI dictionary (Optional) Contains document-level information for Uniform Resource
Identifier annotations; see page 87.

Implementation note Acrobat 1.0 viewers ignore OpenAction, Threads and Dests. They also
ignore FullScreen as the value of PageMode.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.3 Pages tree 65

6.3 Pages tree

The pages of a document are accessible through a tree of nodes known as
the Pages tree. This tree defines the ordering of the pages in the document.

To optimize the performance of viewer applications, the Acrobat Distiller
program and Acrobat PDF Writer construct balanced trees with each node
in the tree containing up to six children. (For further information on
balanced trees, see reference [6] in the Bibliography on page 279.) The tree
structure allows applications to quickly open a document containing
thousands of pages using only limited memory. Applications should accept
any sort of tree structure as long as the nodes of the tree contain the keys
described in Table 6.2. The simplest structure consists of a single Pages
node that references all the page objects directly.

Note The structure of the Pages tree for a document is unrelated to the content of
the document. In a PDF file for a book, for example, there’s no guarantee
that a chapter will be represented by a single node in the Pages tree.
Applications that consume or produce PDF files are not required to
preserve the existing structure of the Pages tree.

The root and all interior nodes of the Pages tree are dictionaries, whose
minimum contents are shown in Table 6.2.

Table 6.2 Pages attributes

Key Type Semantics

Type name (Required) Object type. Always Pages.

Kids array (Required) List of indirect references to the immediate children of this
Pages node.

Count integer (Required) Specifies the number of leaf nodes (imageable pages) under this
node. The leaf nodes do not have to be immediately below this node in the
tree, but can be several levels deeper in the tree.

Parent dictionary (Required; must be indirect reference) Pages object that is the immediate
ancestor of this Pages object. The root Pages object has no Parent.

Example 6.2 illustrates the Pages object for a document with three pages,
while Appendix A contains an example showing the Pages tree for a
document containing 62 pages.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

66 Chapter 6: Document Structure

Example 6.2 Pages tree for a document containing three pages

2 0 obj
<<
/Type /Pages
/Kids [4 0 R 10 0 R 24 0 R]
/Count 3
>>
endobj

Inheritance of attributes

A Pages object may contain additional keys that provide values for Page
objects that are its descendants. Such values are said to be “inherited.” For
example, a document may specify a MediaBox for all pages by defining
one in the root Pages object. An individual page in the document could
override the MediaBox in this example by specifying a MediaBox in the
Page object for that page.

Attributes that may be inherited are indicated in Table 6.3. If a required key
that may be inherited is omitted from a Page object, then a value must be
supplied in one of its ancestors. If an optional key that may be inherited is
omitted, then a value may be supplied in one of its ancestors; barring that,
the default value will be used.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.4 Page objects 67

Example 6.3 demonstrates inheritance by showing a tree of Pages objects
and Page objects. Pages 1, 2, and 4 are rotated 90º. Page 3 is rotated 270º.
Pages 5 and 7 are not rotated (rotated 0º). Page 6 is rotated 180º.

6.4 Page objects

A Page object is a dictionary whose keys describe a single page containing
text, graphics, and images. A Page object is a leaf of the Pages tree, and has
the attributes shown in Table 6.3.

Table 6.3 Page attributes

Key Type Semantics

Type name (Required) Object type. Always Page.

MediaBox array (Required; may be inherited) Rectangle specifying the “natural size” of the
page, for example the dimensions of an A4 sheet of paper. The rectangle is
an array [llx lly urx ury], specifying the lower left x, lower left y, upper right
x, and upper right y coordinates of the page, in that order. The coordinates
are measured in default user space units.

Parent dictionary (Required; must be indirect reference) Pages object that is the immediate
ancestor of this page.

Pages

page 1

Pages
/Rotate 90

Pages Pages
/Rotate 180

Pages

Page

Page Page

/Rotate 90

Page Page
/Rotate 0

Page

Page
/Rotate 270

page 2

page 3 page 4

page 5 page 6 page 7

Example 6.3 Inheritance of attributes

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

68 Chapter 6: Document Structure

Resources dictionary (Required; may be inherited) Resources required by this page, described in
Section 6.8, “Resources.” If the page requires no resources, this value
should be an empty dictionary, written as << >>. Omitting this value, or
specifying a null value, indicates that the value is to be inherited from an
ancestor Pages object.

Contents stream or array (Optional; must be indirect reference) The page description (contents) for
this page, described in Chapter 7. If Contents is an array of streams, they
are concatenated to produce the page description. This allows a program
that is creating a PDF file to create image objects and other resources as
they occur, even though they interrupt the page description. If Contents is
absent, the page is empty.

CropBox array (Optional; may be inherited) Rectangle specifying the region of the page
displayed and printed. The rectangle is specified in the same way as
MediaBox.

Rotate integer (Optional; may be inherited) Specifies the number of
degrees the page should be rotated clockwise when it is
displayed. This value must be zero (the default) or a
multiple of 90.

Thumb stream (Optional; must be indirect reference) Object that contains a thumbnail
sketch of the page, described in Section 6.5, “Thumbnails.”

Annots array (Optional) An array of objects, each representing an annotation on the page,
described in Section 6.6, “Annotations.” Omit the Annots key if the page
has no annotations.

B (Beads) array (Recommended if the page contains article beads) An array whose elements
are indirect references to each article bead on the page, in drawing order
(the same order as the Annots array). Articles are described in Section 6.10
on page 131.

Implementation note The Acrobat 2.0 viewers will rebuild the Beads array for all pages of a
document containing beads if the first page with a bead does not have a
Beads array.

Dur (Duration) real (Optional; may be inherited) Specifies the “advance timing” (display
duration) of a page. By default, the page will not advance automatically. See
Section 6.4.1, “Presentation mode.”

0º

270º

180º

90º

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.4 Page objects 69

Hid (Hidden) boolean (Optional; may be inherited) If true, the page should be hidden (not
displayed) during a presentation. The default is false. See Section 6.4.1,
“Presentation mode.”

Trans (Transition)
dictionary (Optional; may be inherited) A Transition dictionary, containing

information about transitions between pages. See Section 6.4.1,
“Presentation mode.”

Note that some Page attributes may be inherited; see the note, “Inheritance
of attributes,” on page 66.

Note The intersection between the page’s media box and the crop box is the
region of the default user space coordinate system that is viewed or printed.
Typically, the crop box is located entirely inside the media box, so that the
intersection is the same as the crop box itself.

Figure 6.2 on page 69 shows the distinction between the media box and the
crop box. In the figure, the crop box has been sized so that the crop marks
do not appear when the page is viewed or printed.

TIME

PHOTONS FROM

LIQUID RADIATOR

CHARGE DIVISION

THIRD COORDINATE

READOUT

WIRE

ADDRESS

CATHODE

ANODE WIRE

PLANE

PHOTONS FROM

GAS RADIATOR

e–

 Figure 2.6 TPC and detector for barrel CRID.

The drift space inside each TPC is 1.268 m long, 30.7 cm wide, and the thickness

tapers from 9.2 cm to 5.6 cm. Forty TPCs will be used in the CRID, arranged as

twenty in each end of the barrel. The TPC's are filled with a gas mixture that is

transparent to ultraviolet photons, has good electron lifetime, has a pulse

height spectrum with a peak clearly separated from the noise, and includes a

component which efficiently converts photons to single photoelectrons. Good

electron lifetime is necessary to minimize losses as single electrons drift up to

1.3 m in the TPC. Pure ethane has been chosen for the TPC gas, with Tetrakis

15

Crop box

(region displayed

and printed)

Media box

(size of page)

Figure 6.2 Page object’s media box and crop box

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

70 Chapter 6: Document Structure

Example 6.4 on page 70 shows a Page object with a thumbnail and two
annotations. In addition, the Resources dictionary is specified as a direct
object, and shows that the page makes use of three fonts, with the names F3,
F5, and F7.

6.4.1 Presentation mode

A Page dictionary may contains three keys, Dur, Hid, and Trans, that
contain information that is intended to be used when displaying a PDF
document as a “presentation” or “slide show” and are otherwise ignored. A
PDF viewer is not required to provide a presentation mode. If such a mode
is provided by the viewer or a plug-in, however, then these keys define its
behavior.

Implementation note The Acrobat 2.0 viewers do not currently provide a presentation mode. They
may do so in the future.

Duration

The Dur key in a Page dictionary specifies the advance timing of the page.
The advance timing is intended to be used only when a presentation is being
played in a non-interactive mode. It describes the maximum amount of time
the page will be displayed before the viewer will automatically turn to the
next page; the user can advance the page manually before the time is up. If
no Dur key is specified for a Page object or any of its Pages ancestors, the
page will not advance automatically.

Example 6.4 Page with thumbnail, annotations, and Resources dictionary

3 0 obj
<<
/Type /Page
/Parent 4 0 R
/MediaBox [0 0 612 792]
/Resources << /Font << /F3 7 0 R /F5 9 0 R /F7 11 0 R >>

/ProcSet [/PDF] >>
/Thumb 12 0 R
/Contents 14 0 R
/Annots [23 0 R 24 0 R]
>>
endobj

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.4 Page objects 71

The advance timing is defined as the amount of time between the end of the
last transition and the beginning of the next one, as shown in the time-line
below:

Hidden

The Hid (Hidden) key in a Page dictionary specifies that the page is not to
be displayed during the presentation. If the user attempts to turn to a hidden
page from the previous or following page during a presentation, the page
will be skipped and the next visible page will be displayed. If the page is the
destination of a link or thread, the Hidden attribute will be ignored and the
page will be displayed.

The Hidden attribute of a page will hide the page only during a presentation;
other aspects of the user interface ignore the Hidden attribute.

Transition

The Trans key in a Page dictionary specifies a Transition dictionary, which
describes the effect to use when going to that page, and the amount of time
the transition should take. For example, a transition effect in the Transition
dictionary of page two will execute whenever the user goes to page two,
regardless of the previous page. Table 6.4 defines keys for all Transition
dictionaries; they may contain additional keys that control specific
transition effects.

Table 6.4 Transition attributes

Key Type Semantics

Type name (Optional) Object type. Always Trans.

S (Subtype) name (Optional) Describes the transition effect. If this key is omitted, there will
be no transition effect to that page (the page will be displayed normally),
and the D key in the Transition dictionary is ignored. Transition effects are
described in the following section.

Transition from
page 1 to page 2

Transition from
page 2 to page 3Page 2 is displayed

Transition duration Advance timing Transition duration

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

72 Chapter 6: Document Structure

D (Duration) real (Optional) The duration (in seconds) of the transition effect. The default
duration is 1 second.

Transition effects

All implementations of presentation mode will support the transition effects
shown in Table 6.5. Some of these effects include optional parameters that
control the appearance of the effect. The parameters are described in Table
6.6.

Table 6.5 Transition Effects

Effect Parameters Description

Split Dm, M Two lines sweep across the screen revealing the new page image. The lines
can be either horizontal or vertical, as determined by the Dm key, and can
move from the center out or from the edges in as determined by the M key.

Blinds Dm Multiple lines, evenly distributed across the screen, appear and
synchronously sweep in the same direction to reveal the new page. The lines
are either horizontal or vertical, as determined by the Dm key. Horizontal
lines move down; vertical lines move to the right.

Box Dm A box sweeps from the center out or from the edges inward, as determined
by the M key, revealing the new page image.

Wipe Di A single line sweeps across the screen from one edge to the other, revealing
the new page image. Possible values for Di include 0, 90, 180, and 270.

Dissolve (none) The old page image “dissolves” in a piecemeal fashion to reveal the new
page.

Glitter Di Similar to Dissolve, except the effect sweeps across the image in a wide
band moving from one side of the screen to the other. Supported directions
are 0, 270, and 315.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.4 Page objects 73

Table 6.6 Effect parameters

Key Type Semantics

Di (Direction) real The direction of movement, specified in degrees,
increasing in a counterclockwise direction. A value of 0
points to the right, indicating that the effect proceeds
from left to right. A value of 90 points upward, indicating
that the effect moves from bottom to top.

Note This is different from the page rotation, where the degrees increase in a
clockwise direction.

Dm (Dimension) name For those effects which can be performed either horizontally or vertically,
the Dm key specifies which dimension to use. Possible values are H
(horizontal) or V (vertical).

M (Motion) name For those effects which can be performed either from the center out or the
edges in, the M key specifies which direction to use. Possible values are I
(In) or O (Out).

Example 6.5 shows a page that, in presentation mode, would be displayed
for 5 seconds before advancing to the following page. Before the page is
displayed, there is a 3-second transition in which two vertical lines sweep
across the screen, from the center outwards.

Example 6.5 A page with information for presentation mode

<</Type /Page
/Parent 4 0 R
/Contents 16 0 R
/Dur 5
/Trans<< /S /Split

/D 3.0
/M /O
/Dm /V >>

>>

0º

90º

180º

270º

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

74 Chapter 6: Document Structure

6.5 Thumbnails

A PDF document may include thumbnail sketches of its pages. They are not
required, and even if some pages have them, others may not.

The thumbnail image for a page is the value of the Thumb key of the page
object. The structure of a thumbnail is very similar to that of an Image
resource (see Section 6.8.6, “XObject resources”). The only difference
between a thumbnail and an Image resource is that a thumbnail does not
include Type, Subtype, and Name keys.

Note Different pages in a document may have thumbnails with different numbers
of bits per color component.

Example 6.6 Thumbnail

12 0 obj
<<
/Filter [/ASCII85Decode /DCTDecode]
/Width 76
/Height 99
/BitsPerComponent 8
/ColorSpace /DeviceRGB
/Length 13 0 R
>>
stream
s4IA>!"M;*Ddm8XA,lT0!!3,S!/(=R!<E3%!<N<(!WrK*!WrN,!
... image data omitted...
$B@Eme1Y7Z;J4$cc=Lj/]5#e^_1plJ-N)DE>A<*F2m0Y-
endstream
endobj
13 0 obj
4298
endobj

6.6 Annotations

Annotations are notes or other objects that are associated with a page but are
separate from the page description itself. PDF 1.1 supports three kinds of
annotations: text notes, hypertext links, and movies. (See Figure 6.3.) In the
future, PDF may support additional types.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.6 Annotations 75

If a page includes annotations, they are stored in an array as the value of the
Annots key of the Page object. Each annotation is a dictionary. As shown
in Table 6.7, all annotations must provide a core set of keys, including
Type, Subtype, and Rect. Certain other keys, indicating an annotation’s
color, title, modification date, border, and other information, are also
defined for all annotations but are optional.

Note All coordinates and measurements in text annotations, link annotations, and
outline entries are specified in default user space units. Where a rectangle is
specified as an array of integers, it is in the form:

[llx lly urx ury]

specifying the lower left x, lower left y, upper right x, and upper right y
coordinates of the rectangle.

XYZ
Fit
FitH
FitV
FitR
FitB
FitBH
FitBV

GoTo
GoToR
Launch
Thread
URI

Destination

Action

Link

Movie

Text

Annotation

Figure 6.3 Annotation types

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

76 Chapter 6: Document Structure

Table 6.7 Annotation attributes (common to all annotations)

Key Type Semantics

Type name (Required in PDF 1.0, optional otherwise) Object type. Always Annot.

Subtype name (Required) Annotation subtype.

Rect array of integers (Required) Rectangle specifying the location of the annotation.

Border array (Optional) In PDF 1.0, this is an array of three numbers, specifying the
horizontal corner radius, the vertical corner radius, and the width of the
border of the annotation. The default values are 0, 0, and 1, respectively. No
border is drawn if the width is 0.

Implementation note Acrobat viewers ignore the first two numbers.

In PDF 1.1, the array may have a fourth element, a dash array that allows
specification of solid and dashed borders. The dash array contains “on” and
“off” stroke-lengths for drawing dashes, in the same format as the setdash
marking operator, d (see page 147). An example of a border with a dash
array is [0 0 1 [3]].

Implementation note Acrobat 2.0 viewers support a maximum of 10 entries in the dash array.

C (Color) array (Optional) The annotation color. For links, this is the border color. For text
annotations, it is the background color of a closed annotation’s icon, the title
bar color of an active open annotation’s window, and the window frame
color of an inactive open annotation. A color is specified as an array of three
numbers in the range 0 to 1, representing a color in DeviceRGB space.

T (Title) string (Optional) An arbitrary text label associated with the annotation. It is
displayed in an active open text annotation’s title bar and can be edited from
the annotation’s properties dialog. The characters in this string are encoded
using the predefined encoding PDFDocEncoding, described in Appendix
C.

M (ModDate) string (Optional) The last time an annotation was modified. A text annotation’s
modification date is updated each time the text is changed. The preferred
string value is the date format described in Section 4.4, “Strings,” but
viewers should accept and display any string.

Implementation note The Acrobat 2.0 viewers update the ModDate string only for text
annotations.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.6 Annotations 77

F (Flags) integer (Optional) This value is interpreted as a collection of flags that define
various characteristics of the annotation. The least significant bit is the
“invisible” flag, which specifies how an annotation is displayed when the
appropriate annotation handler is not available. If this flag’s value is 1 and
the viewer does not provide a handler for the annotation’s subtype, the
annotation will not be displayed. If this flag’s value is 0 and the viewer does
not provide a handler for the annotation’s subtype, the annotation will
appear as an unknown annotation. (See the implementation note following
this table.) All other bits are reserved and must be set to 0. The default value
for this key is 0.

Implementation note If an Acrobat 2.0 viewer encounters an annotation of a type it does not
understand, the viewer will display it as an unknown annotation unless the
annotation’s F (Flags) key specifies that the “invisible” flag is set. The C, T,
M, and F keys are ignored by Acrobat 1.0 viewers.

6.6.1 Text annotations

A text annotation contains a string of text. When the annotation is open, the
text is displayed. A PDF viewer application chooses the size and typeface of
the text. Table 6.8 shows the contents of the text annotation dictionary.
Example 6.7 shows a text annotation.

Table 6.8 Text annotation attributes (in addition to those in Table 6.7)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always Text.

Contents string (Required) The text to be displayed. Text can be separated into paragraphs
using carriage returns. The characters in this string are encoded using the
predefined encoding PDFDocEncoding, described in Appendix C.

Open boolean (Optional) If true, specifies that the annotation should initially be displayed
opened. The default is false (closed).

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

78 Chapter 6: Document Structure

Example 6.7 Text annotation

22 0 obj
<<
/Type /Annot
/Subtype /Text
/Rect [266 116 430 204]
/Contents (text for two)
>>
endobj

6.6.2 Link annotations

A link annotation, when activated, displays a destination or performs an
action. A destination is a view of another location, possibly on a different
page, with a different zoom factor, or in a different file. Table 6.9 shows the
contents of the link annotation dictionary.

Table 6.9 Link annotation attributes (in addition to those in Table 6.7)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always Link.

Dest array or name (Required unless the A key is present) The view to go to, represented either
as a “direct destination” (an array, described in Section 6.6.3,
“Destinations”), or a “named destination” (a name, described in Section
6.6.4 on page 80).

A (Action) dictionary (Required unless the Dest key is present) The action to be performed on
activating this link annotation; see Section 6.6.5, “Actions.”

Example 6.8 Link annotation

93 0 obj
<<
/Type /Annot
/Subtype /Link
/Rect [71 717 190 734]
/Border [16 16 1]
/Dest [3 0 R /FitR –4 399 199 533]
>>
endobj

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.6 Annotations 79

Implementation note Acrobat 1.0 viewers do not report an error when a user activates a link or
outline entry that has an unknown destination type or is missing a
destination. Links and outline entries with an A key will appear to have no
destination. The Acrobat 2.0 viewers will report an error when the
destination or action type is unknown.

6.6.3 Destinations

A Link annotation or Outline entry may specify a destination, which
consists of a page, the location of the display window on the destination
page, and the zoom factor to use when displaying the destination page. The
destination is represented as an array containing an indirect reference to the
Page object which is the destination page, along with other information
needed to specify the location and zoom.

Table 6.10 shows the allowed forms of the destination. In the table, top, left,
right, and bottom are numbers specified in the default user space coordinate
system. page is an indirect reference to the destination Page object, except
in the case of the GoToR action, where it is a page number. The page’s
bounding box is the smallest rectangle enclosing all objects on the page. No
side of the bounding box is permitted to be outside the page’s crop box. If it
is, that side of the bounding box is defined by the corresponding side of the
crop box.

Table 6.10 Destination specification

Value of Dest key Semantics

[page /XYZ left top zoom]
If left, top, or zoom is null, the current value of that parameter is retained.
For example, specifying a destination as [4 0 R null null null] will go to
the page object with an object ID of 4 0, retaining the same top, left, and
zoom as the current page. A zoom of 0 has the same meaning as a zoom of
null.

[page /Fit] Fit the page to the window.

[page /FitH top] Fit the width of the page to the window. top specifies the y-coordinate of the
top edge of the window.

[page /FitV left] Fit the height of the page to the window. left specifies the x-coordinate of
the left edge of the window.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

80 Chapter 6: Document Structure

[page /FitR left bottom right top]
Fit the rectangle specified by left bottom right top in the window. If the
height (top − bottom) and width (right − left) imply different zoom factors,
the numerically smaller zoom factor is used, to ensure that the specified
rectangle fits in the window.

[page /FitB] Fit the page’s bounding box to the window.

[page /FitBH top] Fit the width of the page’s bounding box to the window. top specifies the y-
coordinate of the top edge of the window.

[page /FitBV left] Fit the height of the page’s bounding box to the window. left specifies the x-
coordinate of the left edge of the window.

6.6.4 Named destinations

A destination may also be represented by a name. A name allows a
destination to be specified indirectly, even if the destination is in another
file. For example, one file may contain a link to the first page of Chapter 6 in
another file. If the link uses a name (e.g., /Chap6.begin) rather than a
specific location (e.g., page 42), then the page on which Chapter 6 starts can
change without invalidating the link.

The mapping from names to destinations is defined in the file’s Catalog
object, in a dictionary stored as the value of the Dests key. Each key in this
dictionary is a name, and the corresponding value is either a destination, as
defined in Section 6.6.3 on page 79, or a dictionary. If it is a dictionary, it
must have a D key whose value is a destination. (The dictionary enables
named destinations to have additional attributes.)

If an action that contains a destination name does not also contain a file
specification, then the name refers to a destination in the current file and
should be found in the current file’s Dests dictionary. If an action does
contain a file specification, then the name refers to a destination in that file.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.6 Annotations 81

6.6.5 Actions

In PDF 1.1, in addition to specifying a destination, it is possible to specify
an action to be performed when a Link annotation or Outline entry is
activated, or when a document is opened. PDF 1.1 defines five types of
actions:

• GoTo — Change the current page view to a specified page and zoom
factor.

• GoToR — Open another PDF file at a specified page and zoom factor.

• Launch — Launch an application, usually to open a file.

• Thread — Begin reading an article thread, possibly in another PDF file.
Section 6.10, “Articles,” further describes article threads.

• URI — Resolve the specified Uniform Resource Identifier (URI). See
page 85.

Implementation note It is intended that plug-in extensions may add new actions, as described in
Appendix G.

An action is represented as a dictionary. Every action must contain an S
(Subtype) key. Other keys may be present, depending on the action type.
The tables below list the attributes of the five specified action types.

GoTo action

A GoTo action has the same effect as specifying a destination (with a Dest
key) in the Link annotation, but it is less compact and is not compatible with
PDF 1.0. Destinations are preferred over GoTo actions.

Table 6.11 GoTo action attributes

Key Type Semantics

Type name (Optional) Object type. Always Action.

S (Subtype) name (Required) Action type. Always GoTo.

D (Dest) array or name (Required) The destination, as described in Table 6.10 on page 79.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

82 Chapter 6: Document Structure

Example 6.9 GoTo action

42 obj
<<
/Type /Annot
/Subtype /Link
/Rect [71 717 190 734]
/Border [16 16 1]
/A<< /Type /Action

/S /GoTo
/D [3 0 R /FitR –4 399 199 533] >>

>>
endobj

Note This example has the same effect as the Link annotation shown in Example
6.8 on page 78, which uses a destination (a Dest key).

GoToR action

The GoToR action is similar to the GoTo action. However, it includes an
additional parameter, the File key, that specifies the PDF file that contains
the action’s destination.

Table 6.12 GoToR action attributes

Key Type Semantics

Type name (Optional) Object type. Always Action.

S (Subtype) name (Required) Action type. Always GoToR.

D (Dest) array (Required) The destination, represented by an array, as described in Table
6.10 on page 79, except that the destination page (the first element of the
array) must be specified by a page number, not by an indirect reference to
the Page object. The first page is 0.

or
name (Required) The name of a destination. See Section 6.6.4 on page 80.

F (File)
string or dictionary (Required) The file containing the destination view. See Section 6.6.6, “File

specifications,” for the interpretation of the File key.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.6 Annotations 83

Launch action

The Launch action specifies an application to launch or document to open.
The action must specify the application or document as a file, using the F
key.

PDF 1.1 also allows platform-specific information to be included in the
Launch dictionary where that information is needed for specific platform.
The key Win is used for information related to Microsoft Windows
launches; the key Unix is used for information related to UNIX system
launches. If there is no platform specific key, then the F key is used.

Implementation note Some implementations of Acrobat 2.0 viewers may check for alternative
keys whose values provide platform-specific parameters for the Launch
action. For example, the Acrobat 2.0 viewer for Windows will use the
dictionary corresponding to the Win key to determine its launch
parameters.

Table 6.13 Launch action attributes (Continued)

Key Type Semantics

Type name (Optional) Object type. Always Action.

S (Subtype) name (Required) Action type. Always Launch.

F (File)
string or dictionary (Required if there is no alternative key) The file to use in performing the

specified action. See Section 6.6.6, “File specifications,” for the
interpretation of the F key. A viewer that encounters an action with no F key
and for which it does not understand any of the alternative keys will do
nothing.

Win dictionary (Optional) Windows-specific launch parameters as described in Table 6.14.

Unix string (Optional) Not yet defined.

Implementation note The Acrobat 2.0 viewers for Windows use the Windows function
ShellExecute to launch an application. The Win dictionary entries
correspond to the parameters of ShellExecute.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

84 Chapter 6: Document Structure

Table 6.14 Windows-specific launch attributes

Key Type Semantics

F (File) string (Required) The document or application to launch, specified as a DOS file
name using standard DOS syntax. If the string includes a backslash (\), the
backslash must itself be preceded by a backslash.

O (Operation) string (Optional) The operation to perform: (open) or (print). (open) is the
default. If the F key specifies an application, this key is ignored and the
application is launched.

P (Parameters) string (Optional) The parameters passed to the application specified by the F key.
If the F key specifies a document, this key should not be provided.

D (Directory) string (Optional) The default directory, specified using standard DOS syntax.

Thread action

When a viewer performs a Thread action, it goes to the specified thread and
enters thread mode. The thread need not be in the current PDF file.

Table 6.15 Thread action attributes (Continued)

Key Type Semantics

Type name (Optional) Object type. Always Action.

S (Subtype) name (Required) Action type. Always Thread.

F (File)
string or dictionary (Required if the thread is in an external file) The file containing the

destination thread. See Section 6.6.6, “File specifications,” for the
interpretation of the F key.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.6 Annotations 85

D (Dest) (Required) The desired thread destination. One of the following forms must
be provided:

dictionary An indirect reference to a thread in the current file. (See Section 6.10,
“Articles.”)

number A number that specifies the index of a thread in an external file. (The index
of the first thread in a document is 0.)

string The title of a thread in an external file. If more than one thread has the same
title, the first thread in the document’s list of threads with that title will be
chosen.

name The name of a destination, in either the current file or an external file. See
Section 6.6.4, “Named destinations.”

array A destination, as specified in Table 6.10 on page 79.

B (Bead) (Optional) The desired bead in the destination thread. One of the following
forms may be provided:

dictionary An indirect reference to a Bead dictionary in the current file. See Table 6.45
on page 132.

number A number that specifies the bead’s index in the thread in an external file.
(The index of the first bead in a thread is 0).

URI action

A Uniform Resource Identifier (URI) is a string used to identify a resource
on the Internet, typically a file that is the destination of a hypertext link,
although it can also “resolve” to a query or other entity. In PDF 1.1, a URI
action is a Link annotation that includes a URI in its dictionary; activating
the link causes the URI to be resolved.

Note The URI action is resolved by the Acrobat WebLink plug-in.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

86 Chapter 6: Document Structure

Table 6.16 URI action attributes (Continued)

Key Type Semantics

Type name (Optional) Object type. Always Action.

S (Subtype) name (Required) Action type. Always URI.

URI string (Required) The Uniform Resource Identifier to resolve, encoded in 7-bit
ASCII.

IsMap boolean (Optional) If this key is true, the mouse position should be tracked when
link is activated.

In a URI, any characters following a # define a fragment identifier. The
meaning of this identifier depends on the type of the resource that the URI
identifies. In a PDF file, the fragment identifier is the name of a destination,
so the URI action is similar to a GoToR action that uses a named
destination.

Names in PDF allow characters that are not allowed in URI strings. To use
such characters in a fragment identifier, write their two hex-digit character
codes, preceded by a percent sign. The name X&Y, for example, would be
written as X%26Y.

Implementation note When resolving the fragment identifier, the WebLink plug-in will check all
named destinations defined for the document. If one is found whose name
matches the fragment identifier, that destination will be invoked.

In the future, the syntax of the fragment identifier may be extended to
specify threads, highlighting, and direct destinations. In order to reserve a
name space for these future specifications, the destination name PDFD is
reserved.

A URI action’s IsMap attribute indicates that when the action is performed,
the (x, y) position of the mouse within the parent link annotation (relative to
the upper left hand corner of the link rectangle) should be concatenated to
the end of the URI, preceded by a question mark. Here is an example:

http://www.adobe.com/intro?100,200

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.6 Annotations 87

Suppose the bounding rectangle in user space of the Link annotation (the
value of the Rect key) is [llx lly urx ury]. Given the coordinates of the
mouse position in device space, (xd, yd), transform the mouse coordinates to
user space, (xu, yu). The final coordinates, (x, y), are obtained in this way:

x = xu - llx
y = yu - ury

Because these coordinates can be fractional and the IsMap attribute
requires integers, the final coordinates should be rounded to the nearest
integer.

URI dictionary in the Catalog

In order to support URI action types, the Catalog of the PDF file may
include a URI dictionary.

Table 6.17 URI attributes

Key Type Semantics

Base string (Optional) Base URI to resolve relative references. This element allows the
URI of the document itself to be recorded in situations in which the
document may be accessed out of context. URI actions within the document
may be in a “partial” form relative to this base address. When the base
address is not specified, the URI is assumed to be the one originally used to
locate the document. For example, if a document has been moved but the
documents pointed to by relative links within the document have not, the
Base key could be used to override the true URI of the document to fix the
relative links. This concept is parallel to the description of the body element
<BASE> as described in Section 2.7.2 of the HTML specification [8].

6.6.6 File specifications

A file specification together with a file system describes the location of a
file. A simple file specification does not specify a file system to be used, and
a full file specification includes information that selects one or more file
systems. Simple file specifications are strings that represent the name of the
referenced file in a format that is independent of operating system naming
conventions. Simple file specification strings are encoded with the
PDFDocEncoding.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

88 Chapter 6: Document Structure

The standard format for a simple file specification divides the string into
component strings separated by the slash (/) character. The slash is used as
a generic component separator that is mapped to the appropriate separator
when generating a system-dependent file name. The component string may
be empty, and if the component string contains one or more slashes (e.g., in/
out) each slash must be preceded by a backslash (\) (e.g., in\\/out). Note
that the backslash itself must be preceded by a backslash to indicate it is
being used as a character in the string and not the escape character. The
backslashes are removed in defining the components; they are only needed
to distinguish the component values from the component separators.

A simple file specification that begins with a slash is an absolute file
specification. Within an absolute file specification, the last component is the
file name, and the preceding components are the context. The file name may
be empty in some file specifications; for example, URL specifications can
specify directories instead of files. A file specification that begins with a
component (i.e., one that does not begin with a slash) is a relative file
specification. A relative file specification is relative to the file specification
of the document containing the relative file specification.

In the case of a URL file system, the rules of RFC 1808, Relative Uniform
Resource Locators [12], are used to compute an absolute URL from the
document’s file specification and a relative file specification. Prior to this
process, the relative file reference is converted into a relative URL by using
the escape mechanism of RFC 1738, Uniform Resource Locators [9], to
represent any octets that would be either “unsafe” according to RFC 1738 or
not representable in 7-bit US ASCII. In addition, such URL-based relative
file references are limited to being paths as defined in RFC 1808; the
scheme, network location/login, fragment identifier, query information, and
parameters are not allowed.

In the case of other file systems, an absolute file specification is created
from a relative file specification and the file specification of the document
containing the relative file specification by removing the file name
component of the document’s file specification and appending the relative
file specification.

The special component “..” allows condensing a file specification.
Proceeding from left to right, whenever a component that is not “..” is
followed by “..”, that component and the “..” are eliminated from the file
specification and the process is begun again. This allows relative file
specifications that are relative to an initial segment of an absolute file
specification.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.6 Annotations 89

The conversion of a file specification into a system-dependent file name is
specified for each file system. For the Macintosh, the components are
separated by colons (:). For UNIX, the components are separated by
slashes, and an initial slash, if present, is preserved. For DOS, the initial
component is either a physical or logical drive identifier or a network
resource name as returned by the Microsoft Windows function
WNetGetConnection and is followed by a colon. A network resource
name is constructed from the first two components of the file specification;
the first component is the server name and the second component is the
share name (volume name). All the components are then separated by
backslashes. It is possible to specify an absolute DOS path without a drive
by making the first component empty. (Empty components are ignored by
other platforms.)

Table 6.18 provides examples of file specifications on various platforms.

A file specification can be either a string, formatted as described above, or a
dictionary. The dictionary form of the file specification provides for
platform-specific file specifications and allows extension of the form of file
specifications. A dictionary that contains a platform-specific file system key
or a file system key (FS) is a full file specification. This provides alternate
ways to locate a file.

A PDF file viewer should use the appropriate platform-specific key (Mac,
DOS, or Unix). If it does not find the appropriate platform-specific key and
there is no file system value (FS), it should treat the value of the file

Table 6.18 Examples of file specifications

System System-dependent path String

Mac Macintosh HD:PDFDocs:spec.pdf (/Macintosh HD/PDFDocs/spec.pdf)

DOS \pdfdocs\spec.pdf (no drive) (//pdfdocs/spec.pdf)

DOS r:\pdfdocs\spec.pdf (/r/pdfdocs/spec.pdf)

DOS pcadobe/eng:\pdfdocs\spec.pdf (/pcadobe/eng/pdfdocs/spec.pdf)

UNIX /user/fred/pdfdocs/spec.pdf (/user/fred/pdfdocs/spec.pdf)

UNIX pdfdocs/spec.pdf (relative) (pdfdocs/spec.pdf)

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

90 Chapter 6: Document Structure

specification key (F) as a simple file specification. The keys need not
specify the same file, allowing a single file specification to describe
appropriate but different files for different platforms.

Table 6.19 describes the file specification dictionary attributes.

Table 6.19 File specification attributes

Key Type Semantics

FS (FileSystem) name (Optional) The name of the “file system” to be used to interpret this file
specification. A viewer or plug-in can register a file system. A file system
interprets file specifications, opens files, and provides the usual input and
output operations. If a file specification includes a file system, all other keys
are interpreted by this file system. Note that this key is independent of the F,
Mac, DOS. and Unix keys.

F (File) string (Required if no other keys are present) A file specification using the string
format described earlier in this section. A viewer that encounters an action
with no F key and that does not understand any of the alternative keys need
not do anything.

Mac string (Optional) A string that specifies a Macintosh file name using the string
format described above.

DOS string (Optional) A string that specifies a DOS file name using the string format
described above.

Unix string (Optional) A string that specifies a UNIX file name using the string format
described above.

ID array (Optional) An array of two strings. The ID is a file ID as described in
Section 6.11. This allows a viewer to find the exact match more often, and it
allows viewers to warn a user if the file has changed since the link was
made.

The string values of the DOS, Mac and Unix keys should not be modified
by the implementation and are passed unchanged to the file system as an
octet string.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.6 Annotations 91

When the FS key has the value URL, the value of the F key is not a file
specification string: instead, it is a URL formatted as specified in RFC 1738
and must follow the character encoding requirements of that RFC. Because
7-bit US ASCII is a strict subset of the PDFDocEncoding, this value may
also be considered to be in the PDFDocEncoding.

Care must be taken to use safe path names when creating collections of
documents that will be used on various file systems. A safe path name is one
that can be used to locate files on the most common file systems. For
maximum compatibility, only a subset of the US ASCII character set should
be used. All of the upper and lowercase alphabetic (a-z, A-Z) and numeric
characters (0-9) are safe, as are the hyphen (–) and the underscore (_).
The period (.) has special meaning as a relative path specifier in DOS and
Windows file names. When used in file names, the period should only be
used to separate a base file name from a file extension. Some systems are
case-insensitive, so names within a directory should be distinguishable if
case is folded. On DOS and Windows 3.1 systems and on some CD-ROM
file systems, file names are limited to eight characters plus a three character
extension. File system software typically converts long names to short
names by retaining the first six or seven characters and the first three
characters after the last period, if any. The seventh or eighth characters are
converted to other values unrelated to the original value. Therefore, safe file
names are distinguishable from the first six characters.

6.6.7 Movie annotations

A Movie annotation describes the static display and playing of movies and
sounds within PDF documents. These annotations appear to be embedded in
the document, similarly to links. The activation area may be invisible,
bordered in the manner of a link button. There are several options that
control the way a movie is displayed and played.

The activation area may also have the movie’s “poster” displayed. A
QuickTime movie may designate a poster, which is a single frame from the
movie itself or a separately authored frame. If not otherwise specified by the
movie author, the poster is the first frame of the movie. For AVI movies, the
poster is always the first frame of the movie.

Table 6.20 Movie annotation attributes (in addition to those in Table 6.7)

Key Type Semantics

Subtype name (Required) Annotation subtype. Always Movie.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

92 Chapter 6: Document Structure

Movie dictionary (Required) A description of the static characteristics of the Movie; see Table
6.21.

A (Activation) boolean (Optional) A flag that indicates whether the movie should be shown by
clicking in the annotation rectangle. Possible values are:

false Do not play the movie when clicked.
true Play the movie with the default activation values. (This is

the default value for the A key.)
or

dictionary (Optional) Directions for playing the Movie; see Table 6.22.

The Movie dictionary contains information needed to locate the movie data
and to display the poster (if requested) in the annotation rectangle:

Table 6.21 Movie dictionary attributes

Key Type Semantics

F (File)
string or dictionary (Required) A file specification for a self-describing movie file.

Note The format of a “self-describing movie file” is left unspecified, and there is
no guarantee of portability.

Aspect array (Optional) If the movie is visible, the horizontal and vertical sizes of the
movie’s bounding box in pixels: [horiz vert]. An “invisible movie” is one
with no video: it has only sound.

Poster boolean (Optional) A flag indicating whether the poster is to be retrieved from the
movie file for display. Possible values are:
false Do not show a poster image. (This is the default if the

Poster key is omitted.)
true Show the poster image from the movie file.

or

stream (Optional) An image object that is to be displayed as the poster. The format
of this object is identical to an Image resource (see page 122), except that
the Name key is not required.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.7 Outline tree 93

The Activation dictionary contains information needed to control the
dynamics of playing the movie:

Table 6.22 Activation attributes

Key Type Semantics

Show-Controls boolean (Optional) If this key is true, a Movie Controller bar is shown when the
movie is played.

Mode name (Optional) The playing mode for the movie. The defined values are:
Once Show the movie once and stop. (This is the default value.)
Open Show the movie and leave the controller open.
Repeat Repeat the movie from the beginning until stopped.
Palindrome Play the movie back and forth until stopped.

FWScale array (Optional) If this key is omitted, the movie will be played in the annotation
rectangle. Otherwise, it will be played in a floating window. The array
contains two integers, [a b], representing the rational number a ÷ b, which
specifies the magnification factor for the movie. The final window size for
the movie will be (a ÷ b) × Aspect pixels.

6.7 Outline tree

An outline allows a user to access views of a document by name. As with a
link annotation, activation of an outline entry (also called a bookmark)
brings up a new view based on the destination description. Outline entries
form a hierarchy of elements. An entry may be one of several at the same
level in the outline, it may be a sub-entry of another entry, and it may have
its own set of child entries. An outline entry may be open or closed. If it is
open, its immediate children are visible when the outline is displayed. If it is
closed, they are not.

If a document includes an outline, it is accessed from the Outlines key in
the Catalog object. The value of this key is the Outlines object, which is the
root of the outline tree. The contents of the Outlines dictionary appear in
Table 6.23 and Example 6.10. The top-level outline entries are contained in
a linked list, with First pointing to the head of the list and Last pointing to
the tail of the list. When displayed, outline entries appear in the order in
which they occur in the linked list.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

94 Chapter 6: Document Structure

Table 6.23 Outlines attributes

Key Type Semantics

Count integer (Required if document has any open outline entries, otherwise optional)
Total number of open entries in the outline. This includes the total number
of items open at all outline levels, not just top-level outline entries. If the
count is zero, this key should be omitted.

First dictionary (Required if document has any outline entries; must be indirect reference)
Reference to the outline entry that is the head of the linked list of top-level
outline entries.

Last dictionary (Required if document has any outline entries; must be indirect reference)
Reference to the outline entry that is the tail of the linked list of top-level
outline entries.

Example 6.10 Outlines object with six open entries

21 0 obj
<<
/Count 6
/First 22 0 R
/Last 29 0 R
>>
endobj

Each outline entry is a dictionary, whose contents are shown in Table 6.24.

Table 6.24 Outline entry attributes

Key Type Semantics

Title string (Required) The text that appears in the outline for this entry. The characters
in this string are encoded using the predefined encoding
PDFDocEncoding, described in Appendix C.

Dest array or name (Required unless the A key is present) A destination, as described in Table
6.9 on page 78.

A (Action) dictionary (Required unless the Dest key is present) The action to be performed when
this link annotation is activated; see Section 6.6.5, “Actions.”

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.7 Outline tree 95

Parent dictionary (Required; must be indirect reference) Specifies the entry for which the
current entry is a sub-entry. The parent of the top-level entries is the
Outlines object.

Prev dictionary (Required if the entry is not the first of several entries at the same outline
level; must be indirect reference) Specifies the previous entry in the linked
list of outline entries at this level.

Next dictionary (Required if the entry is not the last of several entries at the same outline
level; must be indirect reference) Specifies the next entry in the linked list of
outline entries at this level.

First dictionary (Required if an entry has sub-entries; must be indirect reference) Specifies
the outline entry that is the head of the linked list of sub-entries of this
outline item.

Last dictionary (Required if an entry has sub-entries; must be indirect reference) Specifies
the outline entry that is the tail of the linked list of sub-entries of this outline
item.

Count integer (Required if an entry has sub-entries) If positive, specifies the number of
open descendants the entry has. This includes not just immediate sub-
entries, but sub-entries of those entries, and so on. If the value is negative,
the entry is closed and the absolute value of Count specifies how many
entries will appear when the entry is reopened. If an entry has no
descendants, the Count key should be omitted.

As with Link annotations, GoTo actions should be specified using the Dest
key, for compatibility with viewers implementing the PDF 1.0 specification.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

96 Chapter 6: Document Structure

Example 6.11 shows an outline entry. An example of a complete outline tree
can be found in Appendix A.

Example 6.11 Outline entry

22 0 obj
<<
/Parent 21 0 R
/Dest [3 0 R /Top 0 792 0]
/Title (Document)
/Next 29 0 R
/First 25 0 R
/Last 28 0 R
/Count 4
>>
endobj

6.8 Resources

The content of a Page object is represented by a sequence of instructions
that produce the text, graphics, and images on that page. The instructions for
a particular page may make use of certain objects not contained within that
page’s description itself but that are either located elsewhere in the PDF file
or are PostScript language objects such as fonts. These objects, which are
required in order to draw the page but are not stored in the page content
itself, are called resources.

Resources are not part of a page but are simply referenced by the page.
Multiple pages can share a resource. Because resources are stored outside
the content of all pages, even pages that share resources remain independent
of each other.

PDF currently supports the following resource types: ProcSet, Font,
Encoding, FontDescriptor, ColorSpace, and XObject.

Each page includes a list of the ProcSet, Font, and XObject resources it
uses. This resource list is stored as a dictionary that is the value of the
Resources key in the Page object, and has two functions: it enumerates
the resources directly needed by the page, and it establishes names by which
operators in the page description can refer to the resources. All instructions
in the page description that operate on resources refer to them by name.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 97

Each key in the Resources dictionary is a resource type, whose value is a
dictionary or an array. If it is a dictionary, it contains keys that are resource
names and values that are indirect references to the PDF objects specifying
the resources. If it is an array, it contains a list of names. Only the list of
ProcSet resources is represented as an array in the Resources dictionary; all
other resource lists are represented as dictionaries within the Resources
dictionary.

Example 6.12 shows a Resources dictionary containing a ProcSet array, a
Font dictionary, and an XObject dictionary. The ProcSet array is described
in the following section. The font dictionary contains four fonts named F5,
F6, F7, and F8, and associated with object numbers 6, 8, 10, and 12,
respectively. The XObject dictionary contains two XObjects named Im1 and
Im2 and associated with object numbers 13 and 15, respectively.

Example 6.12 Resources dictionary

<<
/ProcSet [/PDF /ImageB]
/Font << /F5 6 0 R /F6 8 0 R /F7 10 0 R /F8 12 0 R >>
/XObject << /Im1 13 0 R /Im2 15 0 R >>
>>

Some PDF operators take resource names as operands. These resource
names are expected to appear in the current page’s Resources dictionary. If
they do not, an error may be raised or in the case of a font, a default font
may be substituted.

6.8.1 ProcSet resources

The types of instructions that may be used in a PDF page description are
grouped into independent sets of related instructions. Each of these sets,
called ProcSets, may or may not be used on a particular page. ProcSets
contain implementations of the PDF operators and are used only when a
page is printed. The Resources dictionary for each page must contain a
ProcSet key whose value is an array consisting of the ProcSets used on
that page. Each of the entries in the array must be one of the predefined
ProcSets shown in Table 6.25. The Resources dictionary shown in Example
6.12 contains a ProcSet key.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

98 Chapter 6: Document Structure

Table 6.25 Predefined procsets

Procset Name Required if the page has any…

PDF marks on the page whatsoever

Text text

ImageB grayscale images or image masks

ImageC color images

ImageI indexed images (also called color-table images)

6.8.2 Font resources

A PDF font resource is a dictionary specifying the kind of font the resource
provides, its real name, its encoding, and information describing the font
that can be used to provide a substitute for it when it is not available. A font
resource may describe a Type 1 font, an instance of a multiple master Type
1 font, a Type 3 font, or a TrueType font.

All types of fonts supported by PDF share a number of attributes. Table 6.26
lists these attributes.

Table 6.26 Attributes common to all types of fonts

Key Type Semantics

Type name (Required) Resource type. Always Font.

Name name (Required only in PDF 1.0) Resource name, used as an operand of the Tf
operator when selecting the font. Name must match the name used in the
font dictionary within the page’s Resources dictionary.

Implementation note All Acrobat viewers ignore the Name key.

FirstChar integer (Required except for base 14 Type 1 fonts listed in Table 6.28) Specifies the
first character code defined in the font’s Widths array.

LastChar integer (Required except for base 14 Type 1 fonts) Specifies the last character code
defined in the font’s Widths array.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 99

Widths array (Required except for base 14 Type 1 fonts; indirect reference preferred) An
array of LastChar − FirstChar + 1 widths. For character codes outside
the range FirstChar to LastChar, the value of MissingWidth from the
font’s descriptor is used (see Section 6.8.4, “Font descriptors.”) The units in
which character widths are measured depend on the type of font resource.

Encoding
name or dictionary (Optional) Specifies the font’s character encoding. If it is a name, it must be

the name of an encoding resource or the name of a predefined encoding. If it
is a dictionary, it must be an Encoding resource dictionary. If this key is not
present, the font’s built-in encoding is used. Appendix C describes the
predefined encodings (MacRomanEncoding, MacExpertEncoding,
and WinAnsiEncoding).

For Type 1 and TrueType fonts, the BaseFont key in the font dictionary
may contain a style string. If the font is a bold, italic, or bold italic font for
which no PostScript language name is available, the BaseFont key
contains the base name of the font with any spaces removed, followed by a
comma, followed by a style string. The style string contains one of the
strings “Italic”, “Bold”, or “BoldItalic”. For example, the italic variant of
the New York font has a BaseFont of /NewYork,Italic. The PostScript
language name of a font is the name which, in a PostScript language
program, is used as an operand of the findfont operator. It is the name
associated with the font by a definefont operation. This is usually the
value of the FontName key in the PostScript language font dictionary of
the font. For more information, see Section 5.2 of the PostScript Language
Reference Manual, Second Edition.

Type 1 fonts

Type 1 fonts, described in detail in Adobe Type 1 Font Format, are special-
purpose PostScript language programs used for defining fonts. As compared
to Type 3 fonts, Type 1 fonts can be defined more compactly, make use of a
special procedure for drawing the characters that results in higher quality
output at small sizes and low resolution, and have a built-in mechanism for
specifying hints, which are data that indicate basic features of the character
shapes not directly expressible by the basic PostScript language operators.
In addition, Type 1 fonts that contain a UniqueID in the font itself can be
cached across jobs, potentially resulting in enhanced performance. See
Section 2.5 of the Adobe Type 1 Font Format for further information on
UniqueIDs for Type 1 fonts.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

100 Chapter 6: Document Structure

Table 6.27 shows the attributes specific to Type 1 font resources.

Note Character widths in Type 1 font resources are measured in units in which
1000 units correspond to 1 unit in text space.

Table 6.27 Type 1 font additional attributes

Key Type Semantics

Subtype name (Required) Type of font. Always Type1.

BaseFont name (Required) A PostScript language name or a style string specifying the base
font. (See the section on Font Subsets on page 102 for restrictions on the
name.)

FontDescriptor
dictionary (Required except for base 14 fonts; must be indirect reference) A font

descriptor resource describing the font’s metrics other than its character
widths.

The base 14 Type 1 fonts

Some font attributes can be omitted for the fourteen Type 1 fonts guaranteed
to be present with Acrobat Exchange and Acrobat Reader. These fonts are
called the base 14 fonts and include members of the Courier, Helvetica, and
Times families, along with Symbol and ITC Zapf Dingbats. Table 6.28 lists
the PostScript language names of these fonts.

Table 6.28 Base 14 fonts

Courier Symbol

Courier-Bold Times-Roman

Courier-Oblique Times-Bold

Courier-BoldOblique Times-Italic

Helvetica Times-BoldItalic

Helvetica-Bold ZapfDingbats

Helvetica-Oblique

Helvetica-BoldOblique

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 101

Example 6.13 shows the font resource for the Adobe Garamond Semibold
font. In this example, the font is given the name F1, by which it can be
referred to in the PDF page description. The font has an encoding (object
number 25), although neither the encoding nor the font descriptor (object
number 7) is shown in the example.

Example 6.13 Type 1 font resource and character widths array

14 0 obj
<<
/Type /Font
/Subtype /Type1
/Name /F1
/BaseFont /AGaramond-Semibold
/Encoding 25 0 R
/FontDescriptor 7 0 R
/FirstChar 0
/LastChar 255
/Widths 21 0 R
>>
endobj
21 0 obj
[255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 280 438 510 510 868 834 248 320 320 420 510 255
320 255 347 510 510 510 510 510 510 510 510 510 510 255 255
510 510 510 330 781 627 627 694 784 580 533 743 812 354 354
684 560 921 780 792 588 792 656 504 682 744 650 968 648 590
638 320 329 320 510 500 380 420 510 400 513 409 301 464 522
268 259 484 258 798 533 492 516 503 349 346 321 520 434 684
439 448 390 320 255 320 510 255 627 627 694 580 780 792 744
420 420 420 420 420 420 402 409 409 409 409 268 268 268 268
533 492 492 492 492 492 520 520 520 520 486 400 510 510 506
398 520 555 800 800 1044 360 380 549 846 792 713 510 549 549
510 522 494 713 823 549 274 354 387 768 615 496 330 280 510
549 510 549 612 421 421 1000 255 627 627 792 1016 730 500
1000 438 438 248 248 510 494 448 590 100 510 256 256 539 539
486 255 248 438 1174 627 580 627 580 580 354 354 354 354 792
792 790 792 744 744 744 268 380 380 380 380 380 380 380 380
380 380]
endobj

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

102 Chapter 6: Document Structure

Font Subsets

PDF 1.1 permits documents to include subsets of Type 1 fonts. The font
resource and font descriptor that describe a font subset are slightly different
from those of ordinary fonts. These differences allow an application to
recognize font subsets and to merge documents containing different subsets
of the same font.

The value of the font resource’s BaseFont key and the font descriptor’s
FontName key use the following format:

pseudoUniqueTag+PostScriptName

pseudoUniqueTag consists of exactly six uppercase alphabetic characters.
PostScriptName must be the name of the complete Type 1 font. A plus
sign separates pseudoUniqueTag and PostScriptName. For example,
EOODIA+Poetica. The purpose of the tag is to identify the subset.
Different subsets should have different tags.

Note Any font whose BaseFont or FontName uses this format is assumed to
be a font subset.

Implementation note These restrictions make font subsets compatible with 1.0 viewers, enable the
Distiller application to recognize font subsets in its input stream, and
enable Acrobat 2.0 viewers to merge documents containing subsets.

Multiple master Type 1 fonts

The multiple master font format is an extension of the Type 1 font format
that allows the generation of a wide variety of typeface styles from a single
font. This is accomplished through the presence of various design
dimensions in the font. Examples of design dimensions are weight (light to
extra-bold) and width (condensed to expanded). Coordinates along these
design dimensions (such as the degree of boldness) are specified by
numbers.

To specify the appearance of the font, numeric values must be supplied for
each design dimension of the multiple master font. A completely specified
multiple master font is referred to as an instance of the multiple master font.

The note Adobe Type 1 Font Format: Multiple Master Extensions describes
multiple master fonts. An instance of a multiple master font, shown in Table
6.29, has the same keys as an ordinary Type 1 font.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 103

Note Character widths in multiple master Type 1 font resources are measured in
units in which 1000 units correspond to 1 unit in text space.

Table 6.29 Multiple master Type 1 font additional attributes

Key Type Semantics

Subtype name (Required) Type of font. Always MMType1.

BaseFont name (Required) Specifies the PostScript language name of the instance. If the
name contains spaces (such as “MinionMM 366 465 11”), these spaces are
replaced with underscores.

FontDescriptor
dictionary (Required; must be indirect reference) A font descriptor resource describing

the font’s metrics other than its character widths.

Example 6.14 Multiple master font resource and character widths array

7 0 obj
<<
/Type /Font
/Subtype /MMType1
/Name /F4
/BaseFont /MinionMM_366_465_11
/FirstChar 32
/LastChar 255
/Widths 19 0 R
/Encoding 5 0 R
/FontDescriptor 6 0 R
>>
endobj
19 0 obj
[187 235 317 430 427 717 607 168 326 326 421 619 219 317 219
282 427 427 427 427 427 427 427 427 427 427 219 219 619 619
... omitted data...
301 301 301 569 569 0 569 607 607 607 239 400 400 400 400 253
400 400 400 400 400]
endobj

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

104 Chapter 6: Document Structure

Type 3 fonts

PostScript Type 3 fonts, also known as user-defined fonts, are described in
Section 5.7 of the PostScript Language Reference Manual, Second Edition.
PDF provides a variant of Type 3 fonts in which characters are defined by
streams of PDF page-marking operators. These streams, known as
CharProcs, are associated with the character names. As with any font, the
character names are accessed via an encoding vector.

PDF Type 3 font resources differ from the other font resources provided by
PDF. Type 3 font resources define the font itself, while the other font
resources simply contain information about the font.

Type 3 fonts are more flexible than Type 1 fonts because the character-
drawing streams may contain arbitrary PDF page marking operators.
However, Type 3 fonts have no mechanism for improving output at small
sizes or low resolutions, and no built-in mechanism for hinting. Table 6.30
shows the attributes specific to Type 3 font resources.

Table 6.30 Type 3 font additional attributes

Key Type Semantics

Subtype name (Required) Type of font. Always Type3.

CharProcs dictionary (Required) Each key in this dictionary is a character name and the value
associated with that key is a stream object that draws the character. Any
operator that can be used in a PDF page description can be used in this
stream. However, the stream must include as its first operator either d0 (d
zero) or d1 (d one), equivalent to the PostScript language setcharwidth
and setcachedevice operators.

FontBBox array (Required) Array of four numbers, [llx lly urx ury], specifying the lower left
x, lower left y, upper right x, and upper right y coordinates of the font
bounding box, in that order. The coordinates are measured in character
space. The font bounding box is the smallest rectangle enclosing the shape
that results if all characters in the font are placed with their origins
coincident, and then painted. FontBBox is identical to the PostScript Type
3 font FontBBox.

FontMatrix array (Required) Specifies the transformation from character space to text space.
FontMatrix is identical to the PostScript Type 3 font FontMatrix.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 105

Note Character widths and FontBBox in Type 3 font resources are measured in
character space. The transformation from character space to text space is
specified by the value of the FontMatrix key in the Type 3 font dictionary.

Example 6.15 shows a Type 3 font resource.

Example 6.15 Type 3 font resource

6 0 obj
<<
/Type /Font
/Subtype /Type3
/Name /T36
/CharProcs 1928 0 R
/FontBBox [−3 −241 875 856]
/FontMatrix [.001 0 0 .001 0 0]
/FirstChar 3
/LastChar 101
/Widths 7 0 R
/Encoding 1927 0 R
>>
endobj
7 0 obj
 [55 0 0 589 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 31 31 0 0 0 270 0 0 410 40 640
40 0 40 0 40 40 0 0 0 0 0 0 0 0 60 0
58 61 54 52 603 0 29 0 0 853 73 60 62 504 0 659
44 58 60 60 0 0 603 0 0 0 0 0 0 0 0 0
35 0 35]
endobj

TrueType fonts

The TrueType font format was developed by Apple Computer. A TrueType
font resource, shown in Table 6.31, has the same keys as a Type 1 font
resource.

Note Character widths in TrueType font resources are measured in units in which
1000 units correspond to 1 unit in text space.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

106 Chapter 6: Document Structure

Table 6.31 TrueType font attributes

Key Type Semantics

Subtype name (Required) Type of font. Always TrueType.

BaseFont name (Required) Style string specifying the base TrueType font.

FontDescriptor
dictionary (Required; must be indirect reference) A font descriptor resource describing

the font’s metrics other than its character widths.

Example 6.16 TrueType font resource

17 0 obj
<<
/Type /Font
/Subtype /TrueType
/Name /F1
/BaseFont /NewYork,Bold
/FirstChar 0
/LastChar 255
/Widths 23 0 R
/Encoding /MacRomanEncoding
/FontDescriptor 7 0 R
>>
endobj
23 0 obj
 [0 333 333 333 333 333 333 333 0 333 333 333 333 333 333 333
333 333 333 333 333 333 333 333 333 333 333 333 333 0 333 333
333 303 500 666 666 882 848 303 446 446 507 666 303 378 303
... omitted data ...
303 530 1280 757 605 757 605 605 355 355 355 355 803 803 790
803 780 780 780 340 636 636 636 636 636 636 636 636 636 636]
endobj

6.8.3 Encoding resources

An encoding resource describes a font’s character encoding, the mapping
between numeric character codes and character names. These character
names are keys in the font dictionary and are used to retrieve the code which
draws the character. Thus, the font encoding provides the link which

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 107

associates numeric character codes with the glyphs drawn when those codes
are encountered in text. An encoding resource is a dictionary whose
contents are shown in Table 6.32.

Table 6.32 Font encoding attributes

Key Type Semantics

Type name (Optional) Resource type. Always Encoding.

BaseEncoding name (Optional) Specifies the encoding from which the new encoding differs.
This key is not present if the encoding is based on the base font’s encoding.
Otherwise it must be one of the predefined encodings
MacRomanEncoding, MacExpertEncoding, or WinAnsiEncoding,
described in Appendix C.

Differences array (Optional) Describes the differences from the base encoding.

The value of the Differences key is an array of character codes and glyph
names organized as follows:

code1 /name11 /name12 ... /name1i

code2 /name21 /name22 ... /name1j

...
coden /namen1 /namen2 ... /namenk

Each code is the first index in a sequence of characters to be changed. The
first glyph name after the code becomes the name corresponding to that
code. Subsequent names replace consecutive code indexes until the next
code appears in the array or the array ends.

For example, in the encoding in Example 6.17, the glyph quotesingle (’)
is associated with character code 39. Adieresis (Ä) is associated with code
128, Aring (Å) with 129, and trademark (™) with 170.

Example 6.17 Font encoding

25 0 obj
<<
/Type /Encoding
/Differences [39 /quotesingle 96 /grave 128 /Adieresis /Aring
/Ccedilla /Eacute /Ntilde /Odieresis /Udieresis /aacute /agrave
/acircumflex /adieresis /atilde /aring /ccedilla /eacute /egrave

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

108 Chapter 6: Document Structure

/ecircumflex /edieresis /iacute /igrave /icircumflex /idieresis /ntilde
/oacute /ograve /ocircumflex /odieresis /otilde /uacute /ugrave
/ucircumflex /udieresis /dagger /degree /cent /sterling /section /bullet
/paragraph /germandbls /registered /copyright /trademark /acute
/dieresis 174 /AE /Oslash 177 /plusminus 180 /yen /mu 187
/ordfeminine /ordmasculine 190 /ae /oslash /questiondown
/exclamdown /logicalnot 196 /florin 199 /guillemotleft /guillemotright
/ellipsis 203 /Agrave /Atilde /Otilde /OE /oe /endash /emdash
/quotedblleft /quotedblright /quoteleft /quoteright /divide 216
/ydieresis /Ydieresis /fraction /currency /guilsinglleft /guilsinglright /fi
/fl /daggerdbl /periodcentered /quotesinglbase /quotedblbase
/perthousand /Acircumflex /Ecircumflex /Aacute /Edieresis /Egrave
/Iacute /Icircumflex /Idieresis /Igrave /Oacute /Ocircumflex 241
/Ograve /Uacute /Ucircumflex /Ugrave /dotlessi /circumflex /tilde
/macron /breve /dotaccent /ring /cedilla /hungarumlaut /ogonek
/caron]
>>
endobj

6.8.4 Font descriptors

A font descriptor specifies a font’s metrics, attributes, and glyphs. These
metrics provide information needed to create a substitute multiple master
font when the original font is unavailable. The font descriptor may also be
used to embed the original font in the PDF file.

A font descriptor is a dictionary, as shown in Table 6.33, whose keys specify
various font attributes. Most keys are similar to the keys found in Type 1
font and FontInfo dictionaries described in Section 5.2 of the PostScript
Language Reference Manual, Second Edition and the Adobe Type 1 Font
Format. All integer values are units in character space. The conversion from
character space to text space depends on the type of font. See the discussion
in Section 6.8.2, “Font resources.”

Note For detailed information on the coordinate system in which characters are
defined, see Section 5.4 in the PostScript Language Reference Manual,
Second Edition or Section 3.1 in the Adobe Type 1 Font Format.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 109

Table 6.33 Font descriptor attributes

Key Type Semantics

Type name (Required) Resource type. Always FontDescriptor.

Ascent integer (Required) The maximum height above the baseline reached by characters
in this font, excluding the height of accented characters.

CapHeight integer (Required) The y-coordinate of the top of flat capital letters, measured from
the baseline.

Descent integer (Required) The maximum depth below the baseline reached by characters in
this font. Descent is a negative number.

Flags integer (Required) Collection of flags defining various characteristics of the font.
See Table 6.35.

FontBBox array (Required) Array of four numbers, [llx lly urx ury], specifying the lower left
x, lower left y, upper right x, and upper right y coordinates of the font
bounding box, in that order. The font bounding box is the smallest rectangle
enclosing the shape that results if all characters in the font are placed with
their origins coincident, and then painted.

FontName name (Required) The name passed to the PostScript language definefont
operator. (See the section on Font Subsets on page 102 for restrictions on
the name.)

ItalicAngle integer (Required) Angle in degrees counterclockwise from the vertical of the
dominant vertical strokes of the font. ItalicAngle is negative for fonts that
slope to the right, as almost all italic fonts do.

StemV integer (Required) The width of vertical stems in characters.

AvgWidth integer (Optional) The average width of characters in this font. The default value is
0.

FontFile stream (Optional) A stream that defines a Type 1 font.

FontFile2 stream (Optional) A stream that defines a TrueType font.

Leading integer (Optional) The desired spacing between lines of text. The default value is 0.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

110 Chapter 6: Document Structure

MaxWidth integer (Optional) The maximum width of characters in this font. The default value
is 0.

MissingWidth integer (Optional) The width to use for unencoded character codes. The default
value is 0.

StemH integer (Optional) The width of horizontal stems in characters. The default value is
0.

XHeight integer (Optional) The y-coordinate of the top of flat non-ascending lowercase
letters, measured from the baseline. The default value is 0.

CharSet string (Optional) A string which lists the glyph names corresponding to the entries
in the CharStrings dictionary if the font described is a subset font. Each
name must be preceded by a slash. The names may appear in any order. The
name .notdef should be omitted; it is assumed to exist in the font subset.

Font files

Currently, a multiple master Type 1 font can only be used to substitute for
fonts that use the Adobe Roman Standard Character Set as defined in
Appendix E.5 of the PostScript Language Reference Manual, Second
Edition. To make a document portable, it is necessary to embed fonts that do
not use this character set. The only exceptions are the fonts Symbol and ITC
Zapf Dingbats, which are assumed to be present.

Type 1 fonts may be embedded in a PDF 1.1 file using the FontFile
mechanism. The value of the FontFile key in a font descriptor is a stream
that contains a Type 1 font definition. A Type 1 font definition, as described
in the Adobe Type 1 Font Format, consists of three parts: a clear text
portion, an encrypted portion, and a fixed content portion. The fixed content
portion contains 512 ASCII zeros followed by a cleartomark operator, and
perhaps followed by additional data. The stream dictionary for a font file
contains the standard Length and Filter keys plus the additional keys
shown in Table 6.34. While the encrypted portion of a Type 1 font may be in
binary or ASCII hexadecimal format, PDF supports only the binary format.
Example 6.18 shows the structure of an embedded Type 1 font.

TrueType fonts are embedded using the FontFile2 mechanism. The font
descriptor for an embedded TrueType font should contain a FontFile2 key
whose value is a stream that contains the TrueType font definition as
described in TrueType 1.0 Font Files. The stream dictionary should include
a Length1 key as specified in Table 6.34; that key specifies the length in

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 111

bytes of the font file after it has been decoded using the filters specified by
the stream’s Filter key. The Length2 and Length3 keys should not be
used for TrueType fonts.

Because the stream containing Type 1 or TrueType font data may include
binary data, it may be desirable convert this data to ASCII using either the
ASCII hexadecimal or ASCII base-85 encoding.

Implementation note Embedded TrueType fonts are ignored by Acrobat 1.0 viewers.

Table 6.34 Additional attributes for FontFile stream

Key Type Semantics

Length1 integer (Required) Length in bytes of the ASCII portion of the Type 1 font file after
it has been decoded using the filters specified by the stream’s Filter key.

Length2 integer (Required for Type 1 fonts) Length in bytes of the encrypted portion of the
Type 1 font file after it has been decoded using the filters specified by the
stream’s Filter key.

Length3 integer (Required for Type 1 fonts) Length in bytes of the portion of the Type 1 font
file that contains the 512 zeros, plus the cleartomark operator, plus any
following data. This is the length of the data after it has been decoded using
the filters specified by the stream’s Filter key. If Length3 is zero, it
indicates that the 512 zeros and cleartomark have not been included in the
FontFile and must be added.

Example 6.18 Embedded Type 1 font definition

12 0 obj
<<
/Filter /ASCII85Decode
/Length 13 0 R
/Length1 15 0 R
/Length2 14 0 R
/Length3 16 0 R
>>
stream
,p>`rDKJj'E+LaU0eP.@+AH9dBOu$hFD55nC
… omitted data …
JJQ&Nt')<=^p&mGf(%:%h1%9c//K(/*o=.C>UXkbVGTrr~>
endstream

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

112 Chapter 6: Document Structure

endobj
13 0 obj
41116
endobj
14 0 obj
32393
endobj
15 0 obj
2526
endobj
16 0 obj
570
endobj

Flags

The value of the Flags key in a font descriptor is a 32-bit integer that
contains a collection of boolean attributes. These attributes are true if the
corresponding bit is set in the integer. Table 6.35 specifies the meanings of
the bits, with bit 1 being the least significant. Reserved bits must be set to
zero.

Table 6.35 Font flags

Bit position Semantics

1 Fixed-width font

2 Serif font

3 Symbolic font

4 Script font

5 Reserved

6 Uses the Standard Roman Character Set

7 Italic

8–16 Reserved

17 All-cap font

18 Small-cap font

19 Force bold at small text sizes

20–32 Reserved

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 113

All characters in a fixed-width font have the same width, while characters in
a proportional font have different widths. Characters in a serif font have
short strokes drawn at an angle on the top and bottom of character stems,
while sans serif fonts do not have such strokes. A symbolic font contains
symbols rather than letters and numbers. Characters in a script font
resemble cursive handwriting. An all-cap font, which is typically used for
display purposes such as titles or headlines, contains no lowercase letters. It
differs from a small-cap font in that characters in the latter, while also
capital letters, have been sized and their proportions adjusted so that they
have the same size and stroke weight as lowercase characters in the same
typeface family. Figure 6.4 shows examples of these types of fonts.

Figure 6.4 Characteristics represented in the flags field of a font
descriptor

Bit 6 in the flags field indicates that the font’s character set is the Adobe
Standard Roman Character Set, or a subset of that, and that it uses the
standard names for those characters. The characters in the Adobe Standard
Roman Character Set are shown in the first column of Table C.1 on page
248 (A, Æ, Á, etc.); the character names are shown in column 2 (A, AE,
Aacute, etc.).

Finally, bit 19 is used to determine whether or not bold characters are drawn
with extra pixels even at very small text sizes. Typically, when characters
are drawn at small sizes on very low resolution devices such as display
screens, features of bold characters may appear only one pixel wide.
Because this is the minimum feature width on a pixel-based device,
ordinary non-bold characters also appear with one-pixel wide features, and
cannot be distinguished from bold characters. If bit 19 is set, features of
bold characters may be thickened at small text sizes.

Fixed-width font

Sans serif font

Serif font

Symbolic font

Italic font

Script font

All cap font

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

114 Chapter 6: Document Structure

Example 6.19 Font descriptor

7 0 obj
<<
/Type /FontDescriptor
/FontName /AGaramond-Semibold
/Flags 262192
/FontBBox [-177 -269 1123 866]
/MissingWidth 255
/StemV 105
/StemH 45
/CapHeight 660
/XHeight 394
/Ascent 720
/Descent -270
/Leading 83
/MaxWidth 1212
/AvgWidth 478
/ItalicAngle 0
>>
endobj

6.8.5 Color space resources

A color space specifies how color values should be interpreted. While some
PDF operators implicitly specify the color space they use, others require a
color space to be specified. As shown in Figure 6.5, PDF 1.1 supports seven
color spaces: DeviceGray, DeviceRGB, DeviceCMYK, CalGray,
CalRGB, Lab, and Indexed. In addition, provisions have been made for a

DeviceGray

DeviceRGB

DeviceCMYK
CalGray

CalRGB

(CalCMYK)

Indexed

Device-dependent

Device-independent

Special

Figure 6.5 Color spaces

Lab

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 115

CalCMYK color space, although the attributes of this type of space have
not yet been defined. The color spaces follow the semantics described in
Section 4.8 of the PostScript Language Reference Manual, Second Edition.

A Color Space resource is specified by a name if it is one of the device-
dependent color spaces (DeviceGray, DeviceRGB, or DeviceCMYK).
Otherwise it is specified as an array that contains one of the device-
independent color spaces (CalGray, CalRGB, Lab, or CalCMYK) or
special color spaces (Indexed)

In a device-dependent color space, the color values are interpreted as
specifying the percentage of device colorant to be used. This means that the
exact color produced depends on the characteristics of the output device.
For example, in the DeviceRGB color space, a value of 1 for the red
component means “turn red all the way on.” If the output device is a
monitor, the color displayed depends strongly on the settings of the
monitor’s brightness, contrast, and color balance adjustments. In addition,
the precise color displayed depends on the chemical composition of the
compound used as the red phosphor in the particular monitor being used,
the length of time the monitor has been turned on, and the age of the
monitor.

In a device-independent color space, color values are defined by a mapping
from the device-independent color space into a standard color space, the
CIE (Commission Internationale de l’Éclairage) 1931 XYZ color space.
Since the values in the XYZ space can be measured colormetrically, this
establishes a device-independent specification of the desired color. When a
device-independent color value is rendered on a device, the rendered color
is based on the device-independent color specification as well as the color
characteristics of the device. This may or may not result in a true
colorimetric rendering. Variations from a colorimetric rendering may occur
as a consequence of gamut limitations and rendering intents. See the
discussion of color rendering intents on page 125.

See the PostScript Language Reference Manual, Second Edition for further
explanation of device-independent color.

Implementation note The Acrobat 2.0 viewers allow a user to approximate device-independent
colors with device-dependent colors with no transformation. CalGray
colors are treated as DeviceGray, and CalRGB colors are treated as
DeviceRGB.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

116 Chapter 6: Document Structure

Device-dependent color space resources

DeviceGray color space

Colors in the DeviceGray color space are specified by a single value: the
intensity of achromatic light. In this color space, 0 is black, 1 is white, and
intermediate values represent shades of gray.

DeviceRGB color space

Colors in the DeviceRGB color space are represented by three values: the
intensity of the red, green, and blue components in the output. DeviceRGB
is commonly used for video displays because they are generally based on
red, green, and blue phosphors.

DeviceCMYK color space

Colors in the DeviceCMYK color space are represented by four values.
These values are the amounts of the cyan, magenta, yellow, and black
components in the output. This color space is commonly used for color
printers, where they are the colors of the inks traditionally used for four-
color printing. Only cyan, magenta, and yellow are strictly necessary, but
black is generally also used in printing because black ink produces a better
black than a mixture of cyan, magenta, and yellow inks, and because black
ink is less expensive than the other inks.

Device-independent color space resources

CalGray color space

Colors in a CalGray color space are represented by a single value. Input
values are in the range 0 to 1, where 0 is black, 1 is white and intermediate
values are gray.

A CalGray color space is specified by an array of the form

[/CalGray dict]

where the contents of dict are described in Table 6.36.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 117

Table 6.36 CalGray attributes (Continued)

Key Type Semantics

WhitePoint array (Required) Three numbers [Xw Yw Zw] that specify the CIE 1931 (XYZ)-
space tristimulus value of the diffuse white point. The numbers Xw and Zw
must be positive, and Yw must be equal to 1. See discussion in 4.8.3 in the
PostScript Language Reference Manual, Second Edition for further details.

BlackPoint array (Optional) Three numbers [Xb Yb Zb] that specify the CIE 1931 (XYZ)-
space tristimulus value of the diffuse black point. The numbers must be
non-negative. The default value is [0 0 0]. See discussion in 4.8.3 in the
PostScript Language Reference Manual, Second Edition for further details.

Gamma number (Optional) Defines the exponential relationship between the gray
component and Y. The governing equation is Y = gray Gamma. Gamma must
be positive and will generally be greater than or equal to 1. The default
value is 1.

CalRGB color space

Colors in a CalRGB color space are represented by three values: the red,
green and blue components of the color. Each value is in the range 0 to 1.

A CalRGB color space is specified by an array of the form:

[/CalRGB dict]

where the contents of dict are described in Table 6.37.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

118 Chapter 6: Document Structure

Table 6.37 CalRGB attributes

Key Type Semantics

WhitePoint array (Required) Same as for CalGray.

BlackPoint array (Optional) Same as for CalGray.

Gamma array (Optional) Three numbers [Gr Gg Gb] that specify the gamma for the red,
green, and blue components respectively. The governing equations are R′ =
RGr, G′ = GGg, and B′ = BGb, where R, G, and B are the input calibrated
RGB values, and R′, G′, and B′ are the gamma-modified values. The default
value is [1 1 1].

Matrix array (Optional) Nine numbers [Xr Yr Zr Xg Yg Zg Xb Yb Zb] that specify the
linear interpretation of the gamma-modified red, green, and blue
components, R′, G′, and B′. The default value is the identity matrix, [1 0 0
0 1 0 0 0 1]. The transformation from R′G′B′ to XYZ is given by:

X = R′ × Xr + G′ × Xg + B′ × Xb
Y = R′ × Yr + G′ × Yg + B′ × Yb
Z = R′ × Zr + G′ × Zg + B′ × Zb

An example of a CalRGB color space resource is shown here for D65
white point, 1.8 gammas, and Trinitron phosphor chromaticities.

12 0 obj
[/CalRGB
<<
/WhitePoint [0.9505 1 1.0890]
/Gamma [1.8 1.8 1.8]
/Matrix [0.4497 0.2446 0.0252 0.3163 0.6720 0.1412 0.1845

0.0833 0.9227]
>>]
endobj

Lab color space

Colors in a Lab color space are represented by three values: the L*, a* and
b* components of the color. The ranges of each of the three values are
specified under the Range key in Table 6.38.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 119

A Lab color space is specified by an array of the form:

[/Lab dict]

where the contents of dict are described in Table 6.38.

Table 6.38 Lab attributes

Key Type Semantics

WhitePoint array (Required) Same as for CalGray.

BlackPoint array (Optional) Same as for CalGray.

Range array (Optional) Four numbers [amin amax bmin bmax] specifying the range of the a*
and b* components. That is, a* and b* are limited by amin ≤ a* ≤ amax,
bmin ≤ b* ≤ bmax. The default value is [-100 100 -100 100]. The range of
L* is always 0 to 100.

CalCMYK color space

A CalCMYK color space is specified by an array of the form:

[/CalCMYK dict]

where the contents of dict are not defined. These contents will be defined in
a future version of PDF.

Implementation note The CalCMYK color space resource type has been partially defined with
the expectation that its definition will be completed in a future version of
PDF. PDF 1.1 viewers should ignore CalCMYK color space attributes and
render colors specified in this color space as if they had been specified
using DeviceCMYK.

Special color space resources

Indexed color space

Indexed color spaces allow colors to be specified by small integers that are
used as indexes into a table of color values. The values in this table are
colors specified in either the DeviceRGB or DeviceCMYK color space.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

120 Chapter 6: Document Structure

For example, an indexed color space can have white as color number 1, dark
blue as color number 2, turquoise as color number 3, and black as color
number 4.

An indexed color space is specified as follows:

[/Indexed base hival lookup]

The base color space is specified by base and must be either DeviceRGB
or DeviceCMYK. The maximum valid index value, specified by hival, is
determined by the number of colors desired in the indexed color space.
Colors will be specified by integers in the range 0 to hival. The color table
values are contained in lookup, which is a PDF stream. The stream contains
m × (hival + 1) bytes where m is the number of color components in the
base color space. Each byte is an unsigned integer in the range 0 to 255 that
is divided by 255, yielding a color component value in the range 0 to 1. The
color components for each entry in the table are adjacent in the stream. For
example, if the base color space is DeviceRGB and the indexed color
space contains two colors, the order of bytes in the stream is: R0 G0 B0 R1
G1 B1, where letters are the color component and numbers are the table
entry.

Example 6.20 shows a color space resource for an indexed color space.
Colors in the table are specified in the DeviceRGB color space, and the
table contains 256 entries. The stream containing the table has been LZW
and ASCII base-85 encoded.

Example 6.20 Color space resource for an indexed color space

12 0 obj
[/Indexed /DeviceRGB 255 13 0 R]
endobj
13 0 obj
<< /Filter [/ASCII85Decode /LZWDecode] /Length 554 >>
stream
J3Vsg-=dE=!]*)rE$,8^$P%cp+RI0B1)A)g_;FLE.V9
…omitted data…
bS/5%"OmlTJ=PC!c2]]^rh(A~>
endstream
endobj

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 121

Default color space resources

PDF 1.1 adds device-independent color spaces to the color spaces defined in
PDF 1.0. Because viewers for PDF 1.0 generally do not expect these new
color spaces and default gracefully when they are used, a second method for
specifying the use of a device-independent color space is provided in PDF
1.1. This second method allows an appropriate color space to be substituted
for either the DeviceGray or DeviceRGB color spaces. The substitution
is controlled by two special keys, DefaultGray and DefaultRGB, that can
be used in the ColorSpace dictionary of the Resources dictionary of the
current page (or inherited from a Pages object that is an ancestor of the
page). They are used as follows.

When a viewer is performing an operation that results in rendering to a
medium, there is always a current color space, which is established using
the operators of Section 7.4, “Color operators,” or using the ColorSpace
key of an Image resource or an in-line image. When the current color space
is DeviceGray, the ColorSpace dictionary of the Resources dictionary of
the current page is checked for the presence of the DefaultGray key. If this
key is present, then the color space that is the value of that key is used as the
color space for the operation currently being performed. The value of the
DefaultGray key may be either DeviceGray or a CalGray color space
specification.

Similarly, when the current color space is DeviceRGB, the ColorSpace
dictionary of the Resources dictionary of the current page is checked for the
presence of the DefaultRGB key. If this key is present, then the color space
that is the value of that key is used as the color space for the operation
currently being performed. The value of the DefaultRGB key may be
either DeviceRGB or a CalRGB color space specification.

Implementation note The Acrobat 1.0 viewer ignores DefaultRGB and DefaultGray.

6.8.6 XObject resources

XObjects are named resources that appear in the XObject subdictionary
within the Resources dictionary of a page object. PDF currently supports
three types of XObjects: images, forms, and pass-through PostScript
language fragments. In the future it may support other object types.

XObjects are passed by name to the Do operator, described on page 164.
The action taken by the Do operator depends on the type of XObject passed
to it. In the case of images and forms, the Do operator draws the XObject.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

122 Chapter 6: Document Structure

Image resources

An Image resource is an XObject whose Subtype is Image. Image
resources allow a PDF page description to specify a sampled image or
image mask. PDF supports image masks, 1-, 2-, 4-, and 8-bit grayscale
images, and 1-, 2-, 4-, and 8-bit per component color images. Color images
may have three or four components representing either RGB or CMYK.

The sample data format and sample interpretation conform to the
conventions required by the PostScript language image and imagemask
operators. However, all PDF images have a size of 1×1 unit in user space,
and the data must be specified left-to-right, top-to-bottom. Like images in
the PostScript language, PDF images are sized and positioned by adjusting
the current transformation matrix in the page description.

An Image resource is specified by a stream object. The stream dictionary
must include the standard keys required of all streams as well as additional
ones described in the following table. Several of the keys are the same as
those required by the PostScript language image and imagemask
operators. Matching keys have the same semantics.

Table 6.39 Image resource attributes

Key Type Semantics

Type name (Required) Resource type. Always XObject.

Subtype name (Required) Resource subtype. Always Image.

Name name (Required for compatibility with PDF 1.0) Resource name, used as an
operand of the Do operator. Name must match the name used in the
XObject dictionary within the page’s Resources dictionary.

Implementation note The Name key is ignored by all Acrobat viewers.

Width integer (Required) Width of the source image in samples.

Height integer (Required) Height of the source image in samples.

BitsPerComponent
integer (Required) The number of bits used to represent each color component.

ColorSpace color space (Required for images, not allowed for image masks) Color space used for
the image samples. This may be any color space defined in PDF 1.1,
including a device-independent color space. However, for compatibility

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 123

with 1.0 viewers, the DefaultRGB or DefaultGray key should be used to
reference a device-independent color space, as described in the section on
Default color space resources on page 121.

Decode array (Optional) An array of numbers specifying the mapping from sample values
in the image to values appropriate for the current color space. The number
of elements in the array must be twice the number of color components in
the color space specified in the ColorSpace key. The default value results
in the image sample values being used directly. Decode arrays are described
further on page 124.

Interpolate boolean (Optional) If true, requests that image interpolation be performed.
Interpolation attempts to smooth transitions between sample values.
Interpolation may be performed differently by different devices, and not at
all by some. The default value is false.

ImageMask boolean (Optional) Specifies whether the image should be treated as a mask. If true,
the image is treated as a mask; BitsPerComponent must be 1,
ColorSpace should not be provided, and the mask is drawn using the
current fill color. If false, the image is not treated as a mask. The default
value is false.

Intent name (Optional) A name which is a color rendering intent indicating the style of
color rendering that should occur. For example, one might want to render
images in a perceptual or pleasing manner while rendering line art colors
with exact color matches. Intents are meaningful only for the device-
independent color spaces. For further details, see page 125.

Example 6.21 shows an image object. It is a monochrome (1-bit per
component, DeviceGray) image that is 24 samples wide and 23 samples
high. Interpolation is not requested and the default decode array is used. The
image is given the name Im0, which is used to refer to the image when it is
drawn.

Example 6.21 Image resource with length specified as an indirect object

5 0 obj
<<
/Type /XObject
/Subtype /Image
/Name /Im0
/Width 24

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

124 Chapter 6: Document Structure

/Height 23
/BitsPerComponent 1
/ColorSpace /DeviceGray
/Filter /ASCIIHexDecode
/Length 6 0 R
>>
stream
 003B00 002700 002480 0E4940
 114920 14B220 3CB650 75FE88
 17FF8C 175F14 1C07E2 3803C4
 703182 F8EDFC B2BBC2 BB6F84
 31BFC2 18EA3C 0E3E00 07FC00
 03F800 1E1800 1FF800>
endstream
endobj
6 0 obj
174
endobj

Decode arrays

A Decode array can be used to invert the colors in an image or to compress
or expand the range of values specified in the image data. Each pair of
numbers in a Decode array specifies the upper and lower values to which
the range of sample values in the image is mapped. A Decode array contains
one pair of numbers for each component in the color space specified in the
image. The mapping for each color component is a linear mapping that, for
a Decode array of the form [DMin DMax], can be written as:

where:
 n is the value of BitsPerComponent
 i is the input value, in the range 0 to 2n – 1
 DMin and DMax are the values specified in the Decode array
 o is the output value, to be interpreted in the color space of the image.

Samples with a value of zero are mapped to DMin, samples with a value of
2n - 1 are mapped to DMax, and samples with intermediate values are
mapped linearly between DMin and DMax. The default Decode array for each

o DMin i
DMax DMin–

2n 1–
-------------------------------×+=

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 125

color component is [0 1], causing sample values in the range 0 to 2n - 1 to
be mapped to color values in the range 0 to 1. Table 6.40 shows the default
Decode arrays for various color spaces.

Table 6.40 Default Decode arrays for various color spaces

Color space Default Decode array

DeviceGray [0 1]

DeviceRGB [0 1 0 1 0 1]

DeviceCMYK [0 1 0 1 0 1 0 1]

Indexed [0 N] where N = 2n–1

CalGray [0 1]

CalRGB [0 1 0 1 0 1]

Lab [0 100 aMin aMax bMin bMax] where aMin, aMax, bMin,
and bMax correspond to the entries in the Range
array of the image’s color space. 0 and 100 are the
first two entries since the range of L* is always 0
to 100.

As an example of a Decode array, consider a DeviceGray image with 8 bits
per component. The color of each sample in a DeviceGray image is
represented by a single number. The default Decode array maps a sample
value of 0 to a color value of 0 and a sample value of 255 to a color value of
1. A negative image is produced by specifying a Decode array of [1 0],
which maps a sample value of 0 to a color value of 1 and a sample value of
255 maps to a color value of 0. If the image only contains values from 0 to
63 and is to be displayed using the full gray range of 0 to 1, a Decode array
of [0 4] should be used. With this Decode array, a sample value of 0 maps
to a color value of 0, a sample value of 255 maps to a color value of 4, and a
sample value of 63 (the maximum value in the example) maps to a color
value of 0.99.

Color rendering intents

Implementation note The Acrobat 1.0 viewers display an error if an image specifies an Intent.

The supported color rendering intents and their meanings are given below in
Table 6.41. Other intents are permitted, but a viewer based on the PDF 1.1
specification will most likely ignore its value. The default intent is
RelativeColorimetric.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

126 Chapter 6: Document Structure

Table 6.41 Color rendering intents

Name Semantics

 AbsoluteColorimetric Requests an exact color (hue, saturation, and brightness) match. This is
appropriate for uses such as some line art or spot colors. If the exact color
cannot be displayed, the closest available one is substituted.

 RelativeColorimetric Requests an exact hue/saturation match, but scales the brightness range so
that all brightnesses fit into the display device’s brightness range. This is
often appropriate for line art and spot color. As a result of the brightness
scaling, the exact colors produced will differ on devices having different
brightness range capabilities. If the exact hue/saturation cannot be
displayed, the closest available one is substituted.

Perceptual Scales the hue, saturations and brightness ranges so that all values can be
displayed on the output device. This generally provides a pleasing rendering
of scanned images. As a result of the scaling, all colors are modified
somewhat.

Saturation Emphasizes saturation. This is appropriate for business graphics.

Implementation note Because of the large gamut of most displays, version 2.0 of the Acrobat
viewers ignore the Intent key when displaying a PDF file and always use
RelativeColorimetric. When printing to a PostScript printer, the Acrobat
viewers do not specify an intent unless one was explicitly specified.

Form resources

A form is a self-contained description of any text, graphics, or sampled
images that is drawn multiple times on several pages or at different
locations on a single page.

A Form resource is specified by a PDF stream. The keys in the stream
dictionary correspond to the keys in a PostScript language Form dictionary.
Unlike a PostScript language Form dictionary, the Form resource dictionary
does not contain a PaintProc key. Instead, the stream contents specify the
painting procedure. These contents must be described using the same
marking operators that are used for PDF page descriptions. As usual, the
stream must also include a Length key and may include Filter and
DecodeParms keys if the stream is encoded. Table 6.42 describes the
attributes of a Form resource dictionary.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.8 Resources 127

To draw a form, the Do operator is used, with the name of the form to be
drawn given as an operand. As discussed in the introduction to Section 6.8,
“Resources,” this name is mapped to an object ID using the Resources
dictionary for the page on which the form is drawn.

Table 6.42 Form resource attributes

Key Type Semantics

Type name (Required) Resource type. Always XObject.

Subtype name (Required) Resource subtype. Always Form.

BBox array (Required) An array of four numbers that specifies the form’s bounding box
in the form coordinate system. This bounding box is used to clip the output
of the form and to determine its size for caching.

FormType integer (Required) Must be 1.

Matrix matrix (Required) A transformation matrix that maps from the form’s coordinate
space into user space.

Name name (Required) Resource name, used as an operand of the Do operator. Name
must match the name used in the XObject dictionary within the page’s
Resources dictionary.

Resources dictionary (Optional) A list of the resources such as fonts and images required by this
form. The dictionary’s format is the same as for the Resources dictionary in
a Page object. All resources used in the form must be included in the
Resources dictionary of the Page object on which the form appears,
regardless of whether or not they also appear in the Resources dictionary of
the form. It can be useful to also specify them in the form’s Resources
dictionary in order to easily determine which resources are used inside the
form. If a resource is included in both dictionaries, it should have the same
name in both locations.

XUID array (Optional) An ID that uniquely identifies the form. This allows the form to
be cached after the first time it has been drawn in order to improve the speed
of subsequent redraws.

XUID arrays may contain any number of elements. The first element in an
XUID array is the organization ID. Forms that are used only in closed
environments may use 1000000 as the organization ID. Any value can be
used for subsequent elements, but the same values must not be used for

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

128 Chapter 6: Document Structure

different forms. Organizations that plan to distribute forms widely and wish
to use XUIDs must obtain an organization ID from Adobe Systems
Incorporated, as described in Appendix E. Section 5.8 of the PostScript
Language Reference Manual, Second Edition provides a further explanation
of XUIDs.

Example 6.22 Form resource

6 0 obj
<<
/Type /XObject
/Subtype /Form
/Name /Fm0
/FormType 1
/BBox [0 0 1000 1000]
/Matrix [1 0 0 1 0 0]
/Length 38
>>
stream
 0 0 m 0 1000 l 1000 1000 l 1000 0 l f
endstream
endobj

Pass-through PostScript language resources

PDF 1.1 enables a document to include PostScript language fragments in a
page description. These fragments are printer-dependent and take effect
only when printing on a PostScript printer. They have no effect either when
viewing the file or when printing to a non-PostScript printer. In addition,
applications that understand PDF are unlikely to be able to interpret the
PostScript language fragments. Hence, this capability should be used only if
there is no other way to achieve the same result.

A PostScript resource is an XObject whose Subtype key has the value PS.
When a document is printed to a PostScript printer, the contents of the
resource stream replace the Do command that references the resource. This
stream is copied without interpretation and may include PostScript
comments. In any other case, the resource is ignored. When printing to a
PostScript Level 1 printer, if the XObject contains a Level1 key, the value
of that key, which must be a stream, will be used instead of the contents of
the PostScript resource stream.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.9 Info dictionary 129

The PostScript fragment may use Type 1 and TrueType fonts listed in the
resources of the page containing the fragment. It may not use Type 3 fonts.

Note Pass-through PostScript resources should be used with extreme caution,
and only to obtain results not otherwise possible in PDF. Inappropriate use
of PostScript resources can cause PDF files to print incorrectly.

The PostScript resource is not compatible with 1.0 viewers. The following
method can be used instead to create PostScript pass-through data when
compatibility with 1.0 viewers is necessary. A form should be defined with
an empty stream content. It should include a BBox of all zeros, a
FormType of 1, and a Matrix that is the identity matrix. It should include
a Subtype2 key whose value is PS, and a PS key whose value is a stream
that contains the PostScript language pass-through data. It may also contain
a Level1 key as described previously in this section.

6.9 Info dictionary

A document’s trailer may contain a reference to an Info dictionary that
provides information about the document. This optional dictionary may
contain one or more keys, whose values should be strings. These strings
may be displayed in an Acrobat viewer’s Document Info dialog. The
characters in these strings are encoded using the predefined encoding
PDFDocEncoding, described in Appendix C.

Note Omit any key in the Info dictionary for which a value is not known, rather
than including it with an empty string as its value.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

130 Chapter 6: Document Structure

Table 6.43 PDF Info dictionary attributes

Key Type Semantics

Author string (Optional) The name of the person who created the document.

CreationDate string (Optional) The date the document was created. It should be in the format
described in Section 4.4, “Strings.”

ModDate string (Optional) The date the document was last modified. It should be in the
format described in Section 4.4, “Strings.”

Creator string (Optional) If the document was converted into a PDF document from
another form, this is the name of the application that created the original
document.

Producer string (Optional) The name of the application that converted the document from
its native format to PDF.

Title string (Optional) The document’s title.

Subject string (Optional) The subject of the document.

Keywords string (Optional) Keywords associated with the document.

Info strings that are to be interpreted as dates must include the D: prefix (see
Section 4.4, “Strings”). In particular, the 1.0 key CreationDate and the 1.1
key ModDate should use this format. All Info strings that represent dates
should be displayed as a human-readable date. Other Info strings are
uninterpreted.

Info keys and strings may be added to or changed by users or extensions,
and some extensions may choose to permit searches on these keys. PDF 1.1
does not define short names for the keys in Table 6.43, to make it easier to
browse and edit Info dictionary entries. New names should be chosen with
care so that they make sense to users.

Although private data can be stored in the Info dictionary, it is more
appropriate to store it in the Catalog. This allows a user or program to alter
entries in the Info dictionary with less chance of unforeseen side effects.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.10 Articles 131

Example 6.23 shows an example of an Info dictionary.

Example 6.23 Info dictionary

1 0 obj
<<
/Creator (Adobe Illustrator)
/CreationDate (D:19930204080603-08'00')
/Author (Werner Heisenberg)
/Producer (Acrobat Network Distiller 1.0 for Macintosh)
>>
endobj

6.10 Articles

An article thread identifies related elements in a document, enabling a user
to follow a flow of information that may span multiple columns or pages.

A PDF document may include one or more article threads. Each thread has
a title and a list of thread elements, which are referred to as beads. A viewer
may allow the user to select a particular thread and then navigate through it;
the viewer automatically maintains a comfortable zoom level for reading
and moves from one bead to the next, rather than from one page to the next.

If a document includes any threads, they are stored in an array as the value
of the Threads key in the Catalog object. Each thread and its beads are
dictionaries. Table 6.44 lists the attributes of a Thread dictionary, and Table
6.45 lists the attributes of a Bead dictionary.

Table 6.44 Thread attributes

Key Type Semantics

F (First) dict (Required; must be an indirect reference) Specifies the bead that is the first
element of this thread.

I (Info) dict (Optional) Information about the thread. This dictionary should contain
information similar to the document’s Info dictionary and should use the
same key names and data formats for entries that correspond to Info
dictionary entries. Entries in this dictionary should be strings encoded using
the predefined encoding PDFDocEncoding, described in Appendix C.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

132 Chapter 6: Document Structure

Table 6.45 Bead attributes

Key Type Semantics

T (Thread) dict (Required for the first bead of a thread; must be an indirect reference) The
thread of which this bead is the first element.

V (Prev) dict (Required; must be indirect) The previous bead of this thread; for the first
bead in a thread, V specifies the last bead in the thread.

N (Next) dict (Required; must be indirect) The next bead of this thread; for the last bead
in a thread, N specifies the first bead in the thread.

P (Page) dict (Required; must be indirect) The Page on which this bead appears.

R (Rect) array (Required) Rectangle specifying the location of this bead.

Example 6.24 shows a thread with three beads:

Example 6.24 Thread

22 0 obj
<< /F 23 0 R /I << /Title (Man Bites Dog) >> >>
endobj
23 0 obj
<< /T 22 0 R /V 25 0 R /N 24 0 R /P 8 0 R

/R [158 247 318 905] >>
endobj
24 0 obj
<< /V 23 0 R /N 25 0 R /P 8 0 R /R [322 246 486 904] >>
endobj
25 0 obj
<< /V 25 0 R /N 23 0 R /P 10 0 R /R [157 254 319 903] >>
endobj

The Page object for each page on which beads appear should contain a B
key, as described in Section 6.4, “Page objects.” The value of this key is an
array of indirect references to each bead on the page, in drawing order.

Implementation note The thread array and dictionary objects are invisible to 1.0 viewers on all
platforms. Consequently, insert and delete pages operations will not carry
along any threads.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.11 File ID 133

6.11 File ID

A PDF file may contain a reference to another PDF file. Storing a file name,
even in a platform-independent format, does not guarantee that the file can
be found, even if it exists and its name has not been changed. Different
server software applications often present different names for the same file.
For example, servers running on DOS platforms must convert all file names
to eight letters and a three-letter extension. Different servers use different
strategies for converting long names to this format.

References to PDF files can be made more reliable by making the PDF file
reference consist of two parts: (1) a normal operating system-based file
reference and (2) a file ID. The file ID characterizes the file and is stored
with the file. Placing a file ID with the file reference and in the file itself
increases the chances that a file reference can be resolved correctly.
Matching the ID in the reference with the ID in the file indicates whether
the desired file was found.

Implementation note The indexes created by the Acrobat Catalog application also contain
references to PDF files.

PDF 1.1 recommends that files have an ID key in their trailer. The value of
this key is an array of two strings. The first element is a permanent ID,
based on the contents of the file at the time the file was created. This ID
does not change when the file is incrementally updated. The second element
is a changing ID, based on the contents of the file at the time the file is
incrementally updated. When a file is first written, the IDs are set to the
same value. When resolving a file reference, if both IDs match, it is very
likely that the correct file has been found. If only the first ID matches, then a
different version of the correct file has been found.

Implementation note Although the ID key is not required, all Adobe applications that produce
PDF will include this key. Acrobat Exchange will add this key when saving
a file if it is not present.

To help insure the uniqueness of the file ID, it is recommend that file ID be
computed using a message digest algorithm such as MD5, as described in
RFC 1321: The MD5 Message-Digest Algorithm [19]. It is recommend that
the following information be passed to the message digest algorithm:

• the current time

• a string representation of the location of the file, usually a path name

• the document size in bytes

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

134 Chapter 6: Document Structure

• the value of each entry in the document’s Info dictionary.

Implementation note Adobe applications pass this information to the MD5 message digest
algorithm to calculate file IDs. Note that the calculation of the file IDs need
not be reproducible. All that matters is that the file IDs are likely to be
unique. For example, two implementations of this algorithm might use
different formats for the current time. This will cause them to produce
different file IDs for the same file created at the same time, but this does not
affect the uniqueness of the ID.

6.12 Encryption dictionary

Documents can be protected via encryption, as described in Section 5.7,
“Encryption.” Every protected document must have an Encrypt dictionary,
which specifies the security handler to be used to authorize access to the
document. The Encrypt dictionary also contains whatever additional
information the security handler chooses to store in it.

Table 6.46 describes the standard keys in the Encrypt dictionary. In addition
to the keys listed in the table, a security handler may add other key–value
pairs. Strings in the Encrypt dictionary must be encrypted and decrypted by
the security handler itself, using whatever encryption algorithm it chooses;
unlike other strings in a PDF file, they are not automatically encrypted and
decrypted.

Table 6.46 Encrypt dictionary attributes

Key Type Semantics

Filter name (Required) The security handler’s name.

6.12.1 Security handlers

Security handlers authorize users to access the content of PDF files. They
may use whatever data they choose to do so, such as passwords, the
presence of a specific hardware key, or the output of a fingerprint scanner.

Implementation note Version 2.0 of the Acrobat viewers include one built-in security handler,
described in the following section. Plug-ins can provide other security
handlers.

In addition to granting access to the contents of the file, a security handler
may grant permission to perform specific operations on the file.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

6.12 Encryption dictionary 135

Implementation note Version 2.0 of the Acrobat viewers support the following permissions:

• Printing the document.

• Copying text and graphics in the document to the clipboard.

• Modifying the document.

• Adding notes to the document and modifying existing notes.

Security handlers can place whatever additional key–value pairs they wish
into the Encrypt dictionary. Examples of such data includes permissions,
data that allows the security handler to determine which permissions a
particular user should be granted, or data needed for authorizing the user.

6.12.2 Standard security handler

Version 2.0 of the Acrobat viewers includes one built-in security handler,
whose name is Standard. This security handler supports two passwords
(owner and user) that are obtained via a password dialog box. The standard
security handler also supports restricted permissions for users. These
permissions can be set by the owner.

PDF Reference Manual April 16, 1996 Chapter 6: Document Structure

136 Chapter 6: Document Structure

Table 6.47 describes the information in the Encrypt dictionary used by the
standard security handler.

Table 6.47 Standard security handler attributes

Key Type Semantics

R (Revision) number (Required) Revision number of algorithm used to encode data in this
dictionary. The revision number for the standard security handler in Acrobat
2.0 is 2.

U (User) string (Required) Data related to the password needed to open file. This data is
used to determine whether the user entered the user password and whether
the file’s permissions have been tampered with. This data is not an
encrypted form of the password, however.

O (Owner) string (Required) Data related to the password needed to gain full access to file.
This data is used to determine whether the user entered the owner password
and whether the file’s permissions have been tampered with. This data is not
an encrypted form of the owner password, however.

P (Permissions) string (Required) Permissions granted to a user who opens a file with the user
password.

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

137

CHAPTER 7

Page Descriptions

This chapter describes the PDF operators that draw text, graphics, and
images on the page. It completes the specification of PDF. The following
chapters describe how to produce efficient PDF files.

Text, graphics, and images are drawn using the coordinate systems
described in Chapter 3. It may be useful to refer to that chapter when
reading the description of various operators, to obtain a better understanding
of the coordinate systems used in PDF documents and the relationships
among them.

Appendix B contains a complete list of operators, arranged alphabetically.

Note Throughout this chapter, PDF operators are shown with a list of the
operands they require. A dash (—) is used to indicate that an operator takes
no operands. In addition, for operators that correspond to one or more
PostScript language operators, the corresponding PostScript language
operators appear in bold on the first line of the operator’s definition. An
operand specified as a number may be either integer or real. Otherwise,
numeric operands must be integer.

7.1 Overview

A PDF page description can be considered a sequence of graphics objects.
These objects generate marks that are applied to the current page, obscuring
any previous marks they may overlay.

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

138 Chapter 7: Page Descriptions

PDF provides four types of graphics objects:

• A path object is an arbitrary shape made of straight lines, rectangles, and
cubic curves. A path may intersect itself and may have disconnected
sections and holes. A path object includes a painting operator that
specifies whether the path is filled, stroked, and/or serves as a clipping
path.

• A text object consists of one or more character strings that can be placed
anywhere on the page and in any orientation. Like a path, text can be
stroked, filled, and/or serve as a clipping path.

• An image object consists of a set of samples using a specified color
model. Images can be placed anywhere on a page and in any orientation.

• An XObject is a PDF object referenced by name. The interpretation of an
XObject depends on its type. PDF currently supports three types of
XObjects: images, forms, and pass-through PostScript language
fragments.

As described in Section 6.8, “Resources,” a PDF page description is not
necessarily self-contained. It often contains references to resources such as
fonts, forms, or images not found within the page description itself but
located elsewhere in the PDF file.

7.2 Graphics state

The exact effect of drawing a graphics or text object is determined by
parameters such as the current line thickness, font, and leading. These
parameters are part of the graphics state.

Although the contents of the PDF graphics state are similar to those of the
graphics state in the PostScript language, PDF extends the graphics state to
include separate stroke and fill colors and additional elements that affect
only text. The use of separate fill and stroke colors in PDF is necessary to
implement painting operators that both fill and stroke a path or text. The
additional text state enables the implementation of a more compact set of
text operators.

Tables 7.1 and 7.2 list the parameters in the graphics state, arranged
alphabetically. For each parameter, the table lists the operator that sets the
parameter, along with any restriction on where the operator may appear in a
page description. For convenience, the text-specific elements are listed
separately.

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

7.2 Graphics state 139

Note None of the graphics state operators may appear within a path.

Table 7.1 General graphics state parameters

Parameter Operator Operator may not appear…

clipping path See the description of the clipping path in Section 7.2.1, “Clipping path.”

CTM cm within a text object or path

current point See the description of the current point in Section 7.2.3, “Current point.”

fill colorspace
g, rg, k, cs within a path

stroke colorspace
G, RG, K, CS within a path

fill color g, rg, k, sc within a path

stroke color
G, RG, K, SC within a path

flatness i within a path

line cap style J within a path

line dash pattern d within a path

line join style j within a path

line width w within a path

miter limit M within a path

rendering intent ri within a path

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

140 Chapter 7: Page Descriptions

Table 7.2 Text-specific graphics state parameters

Parameter Operator Operator may not appear…

character spacing after characters
Tc within a path

word spacing Tw within a path

character and word spacing
" outside a text object

horizontal scaling Tz within a path

leading TL within a path

TD outside a text object

text font Tf within a path

text matrix Tm outside of a text object

text rise Ts within a path

text size Tf within a path

text rendering mode Tr within a path

The graphics state is initialized at the beginning of each page, using the
default values specified in each of the graphics state operator descriptions.

PDF provides a graphics state stack for saving and restoring the graphics
state. PDF provides an operator that saves a copy of the entire graphics state
onto the graphics state stack. Another operator removes the most recently
saved graphics state from the stack and makes it the current graphics state.

Each of the elements in Table 7.1 is described in the following sections,
while the operators that set these parameters are described in Section 7.3,
“Graphics state operators,” and Section 7.4, “Color operators.” The text-
specific parameters listed in Table 7.2 are described in Section 7.6, “Text
state,” near the discussion of text objects. The operators that set them are
described in Sections 7.7.2, “Text state operators,” and 7.7.3, “Text
positioning operators.”

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

7.2 Graphics state 141

7.2.1 Clipping path

The clipping path restricts the region to which paint can be applied on a
page. Marks outside the region bounded by the clipping path are not
painted. Clipping paths may be specified either by a path, or by using one of
the clipping modes for text rendering. These are described in Section 7.5.3,
“Path clipping operators,” and Section 7.6.6, “Text rendering mode.”

7.2.2 CTM

The CTM is the matrix specifying the transformation from user space to
device space. It is described in Section 3.2, “User space.”

7.2.3 Current point

All drawing on a page makes use of the current point. In an analogy to
drawing on paper, the current point can be thought of as the location of the
pen used for drawing.

The current point must be set before graphics can be drawn on a page.
Several of the operators discussed in Section 7.5.1, “Path segment
operators,” set the current point. As a path object is constructed, the current
point is updated in the same way as a pen moves when drawing graphics on
a piece of paper. After the path is painted using the operators described in
Section 7.5.2, “Path painting operators,” the current point is undefined.

The current point also determines where text is drawn. Each time a text
object begins, the current point is set to the origin of the page’s coordinate
system. Several of the operators described in Section 7.7.3, “Text
positioning operators,” change the current point. The current point is also
updated as text is drawn using the operators described in Section 7.7.4,
“Text string operators.”

7.2.4 Fill color

The fill color is used to paint the interior of paths and text characters that are
filled. Filling is described in Section 7.5.2, “Path painting operators.”

7.2.5 Flatness

Flatness sets the maximum permitted distance in device pixels between the
mathematically correct path and an approximation constructed from straight
line segments, as shown in Figure 7.1.

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

142 Chapter 7: Page Descriptions

Note Flatness is inherently device-dependent, because it is measured in device
pixels.

Figure 7.1 Flatness

7.2.6 Line cap style

The line cap style specifies the shape to be used at the ends of open subpaths
when they are stroked. Allowed values are shown in Figure 7.2.

Flatness error

tolerance

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

7.2 Graphics state 143

Figure 7.2 Line cap styles

7.2.7 Line dash pattern

The line dash pattern controls the pattern of dashes and gaps used to stroke
paths. It is specified by an array and a phase. The array specifies the length
of alternating dashes and gaps. The phase specifies the distance into the
dash pattern to start the dash. Both the elements of the array and the phase
are measured in user space units. Before beginning to stroke a path, the
array is cycled through, adding up the lengths of dashes and gaps. When the
sum of dashes and gaps equals the value specified by the phase, stroking of
the path begins, using the array from the point that has been reached. Figure
7.3 shows examples of line dash patterns. As can be seen from the figure,
the command [] 0 d can be used to restore the dash pattern to a solid line.

0

1

2

Line cap

style Description

Butt end caps—the stroke is
squared off at the endpoint of the
path.

Round end caps—a semicircular
arc with a diameter equal to the
line width is drawn around the
endpoint and filled in.

Projecting square end caps—the
stroke extends beyond the end of
the line by a distance which is half
the line width and is squared off.

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

144 Chapter 7: Page Descriptions

Figure 7.3 Line dash pattern

Dashed lines wrap around curves and corners just as solid stroked lines do.
The ends of each dash are treated with the current line cap style, and corners
within dashes are treated with the current line join style.

7.2.8 Line join style

The line join style specifies the shape to be used at the corners of paths that
are stroked. Figure 7.4 shows the allowed values.

[] 0

[3] 0

[2] 1

[3 5] 6

[2 3] 11

[2 1] 0

Turn dash off–solid line

3 units on, 3 units off, …

1 on, 2 off, 2 on, 2 off, …

2 on, 1 off, 2 on, 1 off, …

2 off, 3 on, 5 off, 3 on, 5 off, …

1 on, 3 off, 2 on, 3 off, 2 on, …

Dash pattern
Array and

phase Description

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

7.2 Graphics state 145

Figure 7.4 Line join styles

7.2.9 Line width

The line width specifies the thickness of the line used to stroke a path and is
measured in user space units. A line width of 0 specifies the thinnest line
that can be rendered on the output device.

Note A line width of 0 is an inherently device-dependent value. Its use is
discouraged because the line may be nearly invisible when printing on
high-resolution devices.

7.2.10 Miter limit

When two line segments meet at a sharp angle and mitered joins have been
specified as the line join style, it is possible for the miter to extend far
beyond the thickness of the line stroking the path. The miter limit imposes a
maximum on the ratio of the miter length to the line width, as shown in
Figure 7.5. When the limit is exceeded, the join is converted from a miter to
a bevel. For example, miter limit of 1.415 converts miters to bevels for ϕ

0

1

2

Line join

style Description

Miter joins —the outer edges of
the strokes for the two segments
are continued until they meet. If
the extension projects too far, as
determined by the miter limit, a
bevel join is used instead.

Round joins—a circular arc with
a diameter equal to the line width
is drawn around the point where
the segments meet and filled in,
producing a rounded corner.

Bevel joins—the two path
segments are drawn with butt
end caps (see the discussion of
line cap style), and the resulting
notch beyond the ends of the
segments is filled in with a
triangle.

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

146 Chapter 7: Page Descriptions

less than 90 degrees, a limit of 2.0 converts miters to bevels for ϕ less than
60 degrees, and a limit of 10.0 converts miters to bevels for ϕ less than 11
degrees.

Figure 7.5 Miter length

7.2.11 Stroke color

The stroke color is used to paint the border of paths and text that are
stroked. Stroking is described in Section 7.5.2, “Path painting operators.”

7.2.12 Fill color space

The color space in which the fill color is specified. See Section 7.4, “Color
operators.”

7.2.13 Stroke color space

The color space in which the stroke color is specified. See Section 7.4,
“Color operators.”

7.2.14 Rendering intent

A name which is a color rendering intent indicating the style of color
rendering that should occur. See Section 6.8.6, “XObject resources,” and
especially Table 6.41, “Color rendering intents,” for further detail.

Miter

length

Line width

ϕ

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

7.3 Graphics state operators 147

7.3 Graphics state operators

PDF provides operators to set each of the graphics state parameters
described in Section 7.2, “Graphics state.” This section describes all the
operators used to set all the parameters shown in Table 7.1 except clipping
path, current point, and stroke and fill color. Stroke and fill color are
described in the following section.

None of the graphics state operators described in this section can be used
within a path object. All except those that save and restore the graphics state
(q and Q) or set the CTM (cm) can be included within text objects.

— q Saves the current graphics state on the graphics state stack.

— Q Restores the graphics state to the most recently saved state. Removes the
most recently saved state from the stack and makes it the current state.

a b c d e f cm concat
Modifies the CTM by concatenating the specified matrix. Although the
operands specify a matrix, they are passed as six numbers, not an array.

[array] phase d setdash
Sets the dash pattern parameter in the graphics state. If array is empty, the
dash pattern is a solid, unbroken line, otherwise array is an array of
numbers, all non-negative and at least one non-zero, that specifies distances
in user space for the length of dashes and gaps. phase is a number that
specifies a distance in user space into the dash pattern at which to begin
marking the path. The default dash pattern is a solid line.

flatness i setflat
Sets the flatness parameter in the graphics state. flatness is a number in the
range 0 to 100, inclusive. The default value for flatness is 0, which means
that the device’s default flatness is used.

linejoin j setlinejoin
Sets the line join parameter in the graphics state. linejoin is an integer and
has a default value of 0.

linecap J setlinecap
Sets the line cap parameter in the graphics state. linecap is an integer and
has a default value of 0.

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

148 Chapter 7: Page Descriptions

miterlimit M setmiterlimit
Sets the miter limit parameter in the graphics state. miterlimit is a number
that must be greater than or equal to 1, and has a default value of 10.

linewidth w setlinewidth
Sets the line width parameter in the graphics state. linewidth is a number
and has a default value of 1.

7.4 Color operators

The operators that set colors and color spaces fall into two classes.
Operators in the first class, which were defined in PDF 1.0, set the color and
color space at the same time, and they include only device-dependent color
spaces. Operators in the second class, which are defined in PDF 1.1, set
colors and color spaces separately, and they apply to all color spaces.

The default color space is DeviceGray, and the default fill and stroke
colors are both black.

Implementation note For compatibility with PDF 1.0 viewers, it is strongly recommended that
device-dependent colors be specified using the 1.0 operators and that
device-independent colors be specified using the color space substitution
method defined in the section on “Default color space resources” on page
121.

Color operators and colorspace operators may appear between path objects
and inside text objects. They may not appear within path objects.

7.4.1 Device-dependent color space operators

gray g setgray (fill)
Sets the color space to DeviceGray, and sets the gray tint to use for filling
paths. gray is a number between 0 (black) and 1 (white).

gray G setgray (stroke)
Sets the color space to DeviceGray, and sets the gray tint to use for
stroking paths. gray is a number between 0 (black) and 1 (white).

cyan magenta yellow black

k setcmykcolor (fill)
Sets the color space to DeviceCMYK, and sets the color to use for filling
paths. Each operand must be a number between 0 (minimum intensity) and
1 (maximum intensity).

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

7.4 Color operators 149

cyan magenta yellow black

K setcmykcolor (stroke)
Sets the color space to DeviceCMYK, and sets the color to use for stroking
paths. Each operand must be a number between 0 (minimum intensity) and
1 (maximum intensity).

red green blue rg setrgbcolor (fill)
Sets the color space to DeviceRGB, and sets the color to use for filling
paths. Each operand must be a number between 0 (minimum intensity) and
1 (maximum intensity).

red green blue RG setrgbcolor (stroke)
Sets the color space to DeviceRGB, and sets the color to use for stroking
paths. Each operand must be a number between 0 (minimum intensity) and
1 (maximum intensity).

7.4.2 Generic color space operators

colorspace cs setcolorspace (fill)
Sets the color space to use for filling paths. colorspace must be a name. If
the ColorSpace resource is specified by a name (DeviceGray,
DeviceRGB, or DeviceRGB), then that name may be used. If it is
specified by an array (the device-independent and special color spaces),
then colorspace must be a name defined in the Resources dictionary of the
current page.

For example, the following expression is illegal:

[/CalGray dict] cs

Instead, one would write

/CS42 cs

and the Resources dictionary would contain

/CS42 [/CalGray dict]

The cs operator also sets the current fill-color to its initial value, which
depends on the color space. For the device-dependent and calibrated color
spaces, the initial color is black. For a Lab color space, the initial value is
specified by the minimum Range values. For an Indexed color space, the
initial value is 0.

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

150 Chapter 7: Page Descriptions

colorspace CS setcolorspace (stroke)
Same as cs, but for strokes.

c0 c1 c2 c3 sc setcolor (fill)
Sets the color to use for filling paths. The number of operands required and
their interpretation is based on the current fill color space. For
DeviceGray, CalGray, and Indexed, one operand is required. For
DeviceRGB, CalRGB, and Lab, three operands are required. For
DeviceCMYK and CalCMYK, four operands are required.

c0 c1 c2 c3 SC setcolor (stroke)
Same as sc, but for stroking paths.

7.4.3 Color rendering intent

intent ri Sets the color rendering intent in the graphics state. intent is a name of a
color rendering intent, which indicates the style of color rendering that
should occur, as described in Table 6.41 on page 126. The default rendering
intent is RelativeColorimetric.

Implementation note If an Acrobat 1.0 viewer reads a page containing any of the setcolorspace,
setcolor, or intent operators, it will report an error. Errors can be ignored
by the user and objects will be displayed, but colors will most likely be
black (the default).

7.5 Path operators

Paths are used to represent lines, curves, and regions. A path consists of a
series of path segment operators describing where marks will appear on the
page, followed by a path painting operator, which actually marks the path in
one of several ways. A path may be composed of one or more disconnected
sections, referred to as subpaths. An example of a path with two subpaths is
a path containing two parallel line segments.

Path segments may be straight lines or curves. Curves in PDF files are
represented as cubic Bézier curves. A cubic Bézier curve is specified by the
x- and y-coordinates of four points: the two endpoints of the curve (the
current point, P0, and the final point, P3) and two control points (points P1
and P2), as shown in Figure 7.6.

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

7.5 Path operators 151

Once these four points are specified, the cubic Bézier curve R(t) is
generated by varying the parameter t from 0 to 1 in the following equation:

In this equation, P0 is the current point before the curve is drawn. When the
parameter t has the value 0, R(t) = P0 (the current point). When t = 1, R(t) =
P3. The curve does not, in general, pass through the two control points P1
and P2.

Bézier curves have two desirable properties. First, the curve is contained
within the convex hull of the control points. The convex hull is most easily
visualized as the polygon obtained by stretching a rubber band around the
outside of the four points defining the curve. This property allows rapid
testing of whether the curve is completely outside the visible region, and so
does not have to be rendered. Second, Bézier curves can be very quickly
split into smaller pieces for rapid rendering.

Note In the remainder of this book, the term Bézier curve means cubic Bézier
curve.

Paths are subject to and may also be used for clipping. Path clipping
operators replace the current clipping path with the intersection of the
current clipping path and the current path.

P1 (x1, y1)
P2 (x2 , y2)

P3 (x3, y3)

P0 (current point)

Figure 7.6 Bézier curve

x1 y1 x2 y2 x3 y3 c

R t() 1 t–()3
P0 3t 1 t–()2

P1 3t
2

1 t–()P2 t
3
P3+ + +=

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

152 Chapter 7: Page Descriptions

<path> ::= <subpath>+
{path clipping operator}
<path painting operator>

<subpath> ::= m <path segment operator except m and re>* |
re

7.5.1 Path segment operators

All operands are numbers that are coordinates in user space.

x y m moveto
Moves the current point to (x, y), omitting any connecting line segment.

x y l (operator is lowercase L) lineto
Appends a straight line segment from the current point to (x, y). The new
current point is (x, y).

x1 y1 x2 y2 x3 y3 c curveto
Appends a Bézier curve to the path. The curve extends from the current
point to (x3, y3) using (x1, y1) and (x2, y2) as the Bézier control points, as
shown in Figure 7.6. The new current point is (x3, y3).

x2 y2 x3 y3 v curveto (first control point coincides with initial point on curve)
Appends a Bézier curve to the current path between the current point and
the point (x3, y3) using the current point and (x2, y2) as the Bézier control
points, as shown in Figure 7.7. The new current point is (x3, y3).

Figure 7.7 v operator

Current point

(x2, y2)

(x3, y3)

x2 y2 x3 y3 v

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

7.5 Path operators 153

x1 y1 x3 y3 y curveto (second control point coincides with final point on curve)
Appends a Bézier curve to the current path between the current point and
the point (x3, y3) using (x1, y1) and (x3, y3) as the Bézier control points, as
shown in Figure 7.8. The new current point is (x3, y3).

Figure 7.8 y operator

x y width height re Adds the rectangle to the current path. width and height are distances in
user space.

— h closepath
Closes the current subpath by appending a straight line segment from the
current point to the starting point of the subpath.

7.5.2 Path painting operators

Paths may be stroked and/or filled. As in the PostScript language, painting
completely obscures any marks already on the page under the region that is
painted.

Stroking draws a line along the path, using the line width, dash pattern,
miter limit, line cap style, line join style, and stroke color from the graphics
state. The line drawn when a path is stroked is centered on the path. If a path
consists of multiple subpaths, each is treated separately.

The process of filling a path paints the entire region enclosed by the path,
using the fill color. If a path consists of several disconnected subpaths, each
is filled separately. Any open subpaths are implicitly closed before being
filled. Closing is accomplished by adding a segment between the first and
last points on the path. For a simple path, it is clear what lies inside the path

Current point

(x1, y1)

(x3, y3)

x1 y1 x3 y3 y

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

154 Chapter 7: Page Descriptions

and should be painted by a fill. For more complicated paths, it is not so
obvious. One of two rules is used to determine which points lie inside a
path.

The non-zero winding number rule uses the following test to determine
whether a given point is inside a path and should be painted. Conceptually, a
ray is drawn in any direction from the point in question to infinity and the
points where the ray crosses path segments are examined. Starting from a
count of zero, add one to the count each time a path segment crosses the ray
from left to right, and subtract one from the count each time a path segment
crosses the ray from right to left. If the ray encounters a path segment that
coincides with it, the result is undefined. In this case, a ray in another
direction can be picked, since all rays are equivalent. After counting all the
crossings, if the result is zero then the point is outside the path. The effect of
using this rule on various paths is illustrated in Figure 7.9. The non-zero
winding number rule is used by the PostScript language fill operator.

Figure 7.9 Non-zero winding number rule

The even–odd rule uses a slightly different strategy. The same calculation is
made as for the non-zero winding number rule, but instead of testing for a
result of zero, a test is made as to whether the result is even or odd. If the
result is odd, the point is inside the path; if the result is even, the point is
outside. The result of applying this rule to various paths is illustrated in
Figure 7.10. The even–odd rule is used by the PostScript language eofill
operator.

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

7.5 Path operators 155

Figure 7.10 Even–odd rule

— n Ends the path without filling or stroking it.

— S stroke
Strokes the path.

— s closepath and stroke
Similar to the S operator, but closes the path before stroking it.

— f fill
Fills the path, using the non-zero winding number rule to determine the
region to fill.

— F fill
Same as the f operator. Included only for compatibility. Although
applications that read PDF files must be able to accept this operator,
applications that generate PDF files should use the f operator instead.

— f* eofill
Fills the path, using the even–odd rule to determine the region to fill.

— B fill and stroke

— b closepath, fill, and stroke

— B* eofill and stroke

— b* closepath, eofill, and stroke

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

156 Chapter 7: Page Descriptions

7.5.3 Path clipping operators

Path clipping operators cause the current clipping path to be replaced with
the intersection of the current clipping path and the path. A path is made
into a clipping path by inserting a path clipping operator between the last
path segment operator and the path painting operator.

Although the path clipping operator appears before the path painting
operator, the path clipping operator does not alter the clipping path at the
point it appears. Rather, it modifies the effect of the path painting operator.
After the path is filled or stroked by the path painting operator, it is set to be
the current clipping path. If the path is both filled and stroked, the painting
is done in that order before making the path the current clipping path.

The definition of the clipping path and all subsequent operations it is to
affect should be contained between a pair of q and Q operators. Execution
of the Q operator causes the clipping path to revert to that saved by the q
operator, before the clipping path was modified.

— W clip
Uses the non-zero winding number rule to determine which regions are
inside the clipping path.

— W* eoclip
Uses the even–odd rule to determine which regions are inside the clipping
path.

7.6 Text state

The text state is composed of those graphics state parameters that affect
only text. See Section 7.2, “Graphics state,” for further information on the
graphics state. Each of the items in the text state is described in the
following sections.

7.6.1 Character spacing

Character spacing modifies the spacing between characters in a string by
adding or removing a specified amount of space after each character.
Character spacing is a number specified in text space units. Figure 7.11
shows the effect of character spacing.

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

7.6 Text state 157

Figure 7.11 Character spacing

7.6.2 Horizontal scaling

Horizontal scaling adjusts the width of characters, by stretching or
shrinking them in the horizontal direction. The scaling is specified as a
percent of the normal width of the characters, with 100 being the normal
width. Figure 7.12 shows the effect of horizontal scaling.

Figure 7.12 Horizontal scaling

7.6.3 Leading

Leading specifies the vertical distance between the baselines of adjacent
lines of text, as shown in Figure 7.13. Leading is measured in text space
units.

Character
C h a r a c t e r

0 (default)

5

Word
WordWord

100 (default)

50

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

158 Chapter 7: Page Descriptions

Figure 7.13 Leading

7.6.4 Text font

Specifies the font used to draw text.

7.6.5 Text matrix

The text matrix specifies the transformation from text space to user space.
See Section 3.3, “Text space.”

7.6.6 Text rendering mode

Determines whether text is stroked, filled, or used as a clipping path.

Note The rendering mode has no effect on text displayed using a Type 3 font.

The rendering modes are shown in Figure 7.14. In the figure, a stroke color
of black and a fill color of light gray are used. After one of the clipping
modes is used for text rendering, the text object must be ended using the ET
operator before changing the text rendering mode.

Note For the clipping modes (4–7), a series of lines has been drawn through the
characters in Figure 7.14 to show where the clipping occurs.

This is 12 point text with

14.5 point leading

Leading

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

7.6 Text state 159

Figure 7.14 Text rendering modes

7.6.7 Text rise

Text rise specifies the amount, in text space units, to move the baseline up or
down from its default location. Positive values of text rise move the baseline
up. Adjustments to the baseline are useful for drawing superscripts or
subscripts. The default location of the baseline can be restored by setting the
text rise to 0. Figure 7.15 illustrates the effect of the text rise, which is set
using the Ts operator.

R

R
1

2

3

0

4

5

6

7

Rendering

mode Description

Fill text

Stroke text

Fill and stroke text

Text with no fill and no stroke (invisible)

Fill text and add it to the clipping path

Stroke text and add it to the clipping path

Fill and stroke text and add it to the clipping path

Add text to the clipping path

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

160 Chapter 7: Page Descriptions

Figure 7.15 Text rise

7.6.8 Text size

Specifies the character size, in text space units, when text is drawn.

7.6.9 Word spacing

Modifies the spacing between words in a string, by adding or removing
space from each ASCII space character (character code 32) in the string.
Word spacing is a number specified in text space units. Figure 7.16
illustrates the effect of word spacing.

Figure 7.16 Effect of word spacing

This text is superscripted

(This text is) Tj 5 Ts (superscripted) Tj

(This) Tj –5 Ts (text) Tj 5 Ts

(moves) Tj 0 Ts (around) Tj

(This text is) Tj –5 Ts (subscripted) Tj

This text
moves around

This text is subscripted

0 (default)

10

Word Space
Word Space

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

7.7 Text operators 161

7.7 Text operators

A PDF text object consists of operators that specify character strings,
movement of the current point, and text state. A text object begins with the
BT operator and ends with the ET operator.

<text object> ::= BT
<text operator or graphics state operator>*
ET

Note The graphics state operators q, Q, and cm cannot appear within a text
object.

When BT is encountered, the text matrix is initialized to the identity matrix.
When ET is encountered, the text matrix is discarded. Text objects cannot
be nested—a second BT cannot appear before an ET.

Note If a page does not contain any text, no text operators (including operators
that merely set the text state) may be present in the page description.

7.7.1 Text object operators

— BT Begins a text object. Initializes the text matrix to the identity matrix.

— ET Ends a text object. Discards the text matrix.

7.7.2 Text state operators

These operators set the text-specific parameters in the graphics state.

Note These operators can appear outside of text objects, and the values they set
are retained across text objects on a single page. Like other graphics state
parameters, the values are initialized to the default values at the beginning
of each page.

charSpace Tc Set character spacing
Sets the character spacing parameter—which determines the amount of
space after a character—in the graphics state. Character spacing is used,
together with word spacing, by the Tj, TJ, and ' operators to calculate
spacing of text within a line. charSpace is a number expressed in text
space units and has a default value of 0.

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

162 Chapter 7: Page Descriptions

fontname size Tf Set font and size
Sets the text font and text size in the graphics state. There is no default value
for either fontname or size; they must be selected using Tf before drawing
any text. fontname is a resource name. size is a number expressed in text
space units.

leading TL Set text leading
Sets the leading parameter in the graphics state. Leading is used by the T*,
' , and " operators to calculate the position of the next line of text. The TL
operator need not be used in a PDF file unless the T*, ', or " operators are
used. leading is a number expressed in text space units and has a default
value of 0.

render Tr Set the text rendering mode
render is an integer and has a default value of 0.

rise Ts Set text rise
Moves the baseline vertically by rise units. This operator is used for
superscripting and subscripting. rise is a number expressed in text space
units and has a default value of 0.

wordSpace Tw Set word spacing
Sets the word spacing parameter in the graphics state. Word spacing is used,
together with character spacing, by the Tj, TJ, and ' operators to calculate
spacing of text within a line. wordSpace is a number expressed in text
space units and has a default value of 0.

scale Tz Set horizontal scaling
Sets the horizontal scaling parameter in the graphics state. scale is a
number expressed in percent of the normal scaling and has a default value
of 100.

7.7.3 Text positioning operators

A text object keeps track of the current point and the start of the current line.
The text string operators move the current point like the various forms of the
PostScript language show operator. Operators that move the start of the
current line move the current point as well.

Note These operators may appear only within text objects.

tx ty Td Moves to the start of the next line, offset from the start of the current line by
(tx, ty). tx and ty are numbers expressed in text space units.

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

7.7 Text operators 163

tx ty TD Moves to the start of the next line, offset from the start of the current line by
(tx, ty). As a side effect, this sets the leading parameter in the graphics state,
used by the T*, ', and " operators. tx and ty are numbers expressed in text
space units. The value assigned to the leading is the negative of ty.

a b c d e f Tm Sets the text matrix and sets the current point and line start position to the
origin. The operands are all numbers, and the default matrix is [1 0 0 1 0 0].
Although the operands specify a matrix, they are passed as six numbers, not
an array.

Note The matrix specified by the operands passed to the Tm operator is not
concatenated onto the current text matrix, but replaces it.

— T* Moves to the start of the next line. The x-coordinate is the same as that of
the most recent TD, Td, or Tm operation, and the y-coordinate equals that of
the current line minus the leading.

7.7.4 Text string operators

These operators draw text on the page. Although it is possible to pass
individual characters to the text string operators, text searching performs
significantly better if the text is grouped by word and paragraph.

PDF supports the same conventions as the PostScript language for
specifying non-printable ASCII characters. That is, a character can be
represented by an escape sequence, as enumerated in Table 4.1 on page 32.

Note The default current point is at the page origin. Therefore, unless some prior
operation in the same text object changes the current point, the text will
appear at the origin. It is suggested that a Tm operation be used to
establish the initial current point in a text object at the position in text space
where initial text is to appear. Subsequent text operations may change the
current point.

string Tj Shows text string, using the character and word spacing parameters from the
graphics state.

string ' Moves to next line and shows text string, using the character and word
spacing parameters from the graphics state.

aw ac string " Moves to next line and shows text string. aw and ac are numbers expressed
in text space units. aw specifies the additional space width and ac specifies
the additional space between characters, otherwise specified using the Tw
and Tc operators.

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

164 Chapter 7: Page Descriptions

Note The values specified by aw and ac remain the word and character spacings
after the " operator is executed, as though they were set using the Tc and
Tw operators.

[number or string …]

TJ Shows text string, allowing individual character positioning, and using the
character and word spacing parameters from the graphics state. For each
element of the array that is passed as an operand, if the element is a string,
shows the string. If it is a number, moves the current point to the left by the
given amount, expressed in thousandths of an em. (An em is a typographic
unit of measurement equal to the size of a font—for example, in a 12-point
font an em is 12 points.)

Each character is first justified according to any character and word spacing
settings made with the Tc or Tw operators, and then any numeric offset
present in the array passed to the TJ operator is applied. An example of the
use of TJ is shown in Figure 7.17.

Note When using the TJ operator, the x-coordinate of the current point after
drawing a character and moving by any specified offset must not be less
than the x-coordinate of the current point before the character was drawn.

Figure 7.17 Operation of TJ operator

7.8 XObject operator

The Do operator permits the execution of an arbitrary object whose data is
encapsulated within a PDF object. The currently supported XObjects are
images and PostScript language forms, discussed in Section 6.8.6, “XObject
resources.”

xobject Do Executes the specified XObject. xobject must be a resource name.

[(AWAY again)] TJAWAY again

[(A) 120 (W) 120 (A) 95 (Y again)] TJAWAY again

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

7.9 In-line image operators 165

7.9 In-line image operators

In addition to the image resource described in Section 6.8.6, “XObject
resources,” PDF supports in-line images. An in-line image consists of the
operator BI, followed by image resource key–value pairs, followed by the
operator ID, followed by the image data, followed by EI:

<in-line image> ::=
BI
<image resource key–value pairs>
ID
{<lines of data>}+
EI

Note If an in-line image does not use ASCIIHexDecode or ASCII85Decode
as one of its filters, ID should be followed by a single space. The character
following the space is interpreted as the first byte of image data.

Image data may be encoded using any of the standard PDF filters. The key–
value pairs provided in an in-line image should not include keys specific to
resources: Type, Subtype, and Name. Within in-line images, the standard
key names may be replaced by the shorter names listed in Table 7.3. These
short names may not be used in image resources, however.

Note In-line images may use only device-dependent color spaces.

Table 7.3 Abbreviations for in-line image names

Name Abbreviated name

ASCIIHexDecode AHx

ASCII85Decode A85

BitsPerComponent BPC

CCITTFaxDecode CCF

ColorSpace CS

DCTDecode DCT

Decode D

DecodeParms DP

DeviceCMYK CMYK

DeviceGray G

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

166 Chapter 7: Page Descriptions

DeviceRGB RGB

Filter F

Height H

ImageMask IM

Indexed I

Intent no abbreviation

Interpolate I

LZWDecode LZW

RunLengthDecode RL

Width W

Note The in-line format should be used only for small images (4K or less)
because viewer applications have less flexibility when managing in-line
image data.

In-line images, like image resources, are one unit wide and one unit high in
user space and drawn at the origin. Images are sized and positioned by
transforming user space using the cm operator.

— BI Begins image

— ID Begins image data

— EI Ends image

Example 7.1 shows a 17×17 sample in-line image. The image is an 8-bit per
component RGB image that has been LZW and ASCII85 encoded. The cm
operator has been used to scale the image to render at a size of 17×17 user
space units and located at an x-coordinate of 298 and a y-coordinate of 388.
The q and Q operators limit the scope of the cm operator’s effect to
resizing the image.

Example 7.1 In-line image

q
17 0 0 17 298 388 cm
BI
/W 17
/H 17
/BPC 8

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

7.10 Type 3 font operators 167

/CS /RGB
/F [/A85 /LZW]
ID
J1/gKA>.]AN&J?]-<HW]aRVcg*bb.\eKAdVV%/PcZ
.…much omitted data …
R.s(4KE3&d&7hb*7[%Ct2HCqC~>
EI
Q

7.10 Type 3 font operators

Type 3 font operators can only be used within the character definitions
inside a Type 3 font resource. Each Type 3 font definition must begin with
either a d0 or d1 operator. See Section 5.7 of the PostScript Language
Reference Manual, Second Edition for details.

wx wy d0 (d zero) setcharwidth
The operands are both numbers.

wx wy llx lly urx ury d1 (d one) setcachedevice
The operands are all numbers.

7.11 In-line pass-through PostScript fragments

PDF 1.1 enables a document to include PostScript language fragments in a
page description. These fragments are printer-dependent and take effect
only when printing on a PostScript printer. They have no effect when
viewing the file or when printing to a non-PostScript printer. In addition,
any other applications which understand PDF are unlikely to be able to
interpret PostScript language fragments. Hence, this capability should only
be used if there is no other way to achieve the same result. See “Pass-
through PostScript language resources” on page 128 for additional
information.

Implementation note If an Acrobat 1.0 viewer reads a page containing this operator, it will report
an error. The operator is otherwise ignored.

string PS
The pass-through PostScript operator PS provides an in-line equivalent to a
PostScript language resource. The PS operator has one argument, a string.
When a PS operator is encountered while a document is being printed to a
PostScript printer, the contents of the string are placed into the PostScript
output as the argument of an instance of the PostScript operator exec. This

PDF Reference Manual April 16, 1996 Chapter 7: Page Descriptions

168 Chapter 7: Page Descriptions

string is copied without interpretation and may include PostScript
comments. In any other case, the PS operator consumes its argument and
has no other effect.

7.12 Compatibility operators

PDF does not specify a viewer’s behavior when it encounters an undefined
page description operator. However, Appendix G does describe the behavior
of the Adobe Acrobat 1.0 and 2.0 viewers. An Acrobat viewer usually alerts
the user when it encounters an undefined page description operator. The
operators below modify this behavior.

Implementation note If an Acrobat 1.0 viewer reads a page containing these operators, it will
report an error. The operators are otherwise ignored.

— BX This operator directs a viewer to not report any undefined operators until a
matching EX is encountered. (BX–EX pairs may nest.)

— EX This operator ends a section of page description in which undefined
operators should not be reported.

PDF Reference Manual April 16, 1996

Section II

Optimizing PDF Files

PDF Reference Manual April 16, 1996

PDF Reference Manual April 16, 1996 Chapter 8: General Techniques for Optimizing

171

CHAPTER 8

General Techniques for
Optimizing PDF Files

The first section of this book describes the syntax allowed in a PDF file. In
many cases there is more than one way to represent a particular construct,
and the previous chapters do not indicate which alternative is preferred. This
section describes techniques to optimize PDF files. Most optimizations
reduce the size of a PDF file, reduce the amount of memory needed to
display pages, or improve the speed with which pages are drawn. Some
optimizations, such as sharing of resources, allow a viewer application to
display a document when it may not have otherwise been possible in low
memory situations. A few optimizations improve the appearance of pages.

This chapter contains techniques that can be generally applied to PDF files.
Following chapters discuss optimizations specifically for text, graphics, and
images.

While it may not be possible to take advantage of all the techniques
described here, it is worth taking more time producing a PDF file to improve
its viewing performance. A PDF file will be produced only once but may be
viewed many times.

File size is a good gauge of the level of optimization, but of course the most
accurate measure is the time it takes to view and print the pages of a
document.

8.1 Use short names

Names in PDF files specify resources, including fonts, forms, and images.
Whenever a name is used, it should contain as few characters as possible.
This minimizes the space needed to store references to the object.

Instead of specifying a name as:

/FirstFontInPage4
/SecondImageInPage8

PDF Reference Manual April 16, 1996 Chapter 8: General Techniques for Optimizing

172 Chapter 8: General Techniques for Optimizing PDF Files

use names such as:

/F1
/Im8

Resource names need not be unique throughout a document. The names of
resource objects must be unique within a given resource type within a single
page. For example, the names of all fonts on a page must be unique.

8.2 Use direct and indirect objects appropriately

As mentioned in Chapter 4, objects contained in composite objects such as
arrays and dictionaries can either be specified directly in the composite
object or referred to indirectly. Using indirect objects frequently improves
performance and reduces the size of a PDF file. In addition, programs that
produce PDF files sometimes must write an object into a PDF file before the
object’s value is known. Indirect objects are useful in this situation.

8.2.1 Minimizing object size

Although PDF allows random access to objects in a file, it does not permit
random access to the substructure that may be present in a single object,
such as the individual key–value pairs in a dictionary object. If a PDF
viewer application needs to access a particular piece of information
contained in an object, it reads the entire object. However, if it encounters
an indirect object reference, it will not read the indirect object until needed.
Using indirect objects minimizes the amount of extra data a PDF viewer
application must read before locating the desired information.

As an example, if a PDF viewer application needs to obtain the PostScript
language name of a font, it must search the appropriate Font dictionary
object. If (in that dictionary object) the Widths array is specified directly,
the application must read the entire array. If the Widths array is specified
by an indirect reference, the application only needs to read the few bytes
that specify the indirect reference and can avoid reading the Widths array
itself.

In general, using indirect references improves the performance of a PDF
file. However, there is some overhead associated with locating an indirect
object, and an indirect object takes up more space than a direct object in a
PDF file. Because of this, small objects should not be specified indirectly. A
rough rule of thumb is that arrays with more than five elements and
dictionaries with more than three key–value pairs should be stored as
indirect objects.

PDF Reference Manual April 16, 1996 Chapter 8: General Techniques for Optimizing

8.3 Take advantage of combined operators 173

8.2.2 Sharing objects

Indirect objects can be referred to from more than one location in a file.
Because of this, using indirect objects can decrease the size of a PDF file by
defining an object only once and making multiple references to it.

As an example, suppose each page in a document require the same
ProcSets. Each page’s Resources dictionary can refer to the same ProcSet
array indirectly instead of duplicating the array.

8.2.3 Placeholder for an unknown value

Indirect objects can also be used when an object must be written at one
location in a file, but its value will not be known until later in the process of
writing the file. The best example of this situation is the Length key in the
dictionary of a Stream object. The dictionary must be placed in the file
ahead of the stream data itself, and must include the Length key, which
specifies the length of the stream that follows. It may not be possible to
know the length of the stream until after the data has been written, however.
By specifying the value of the Length key as an indirect object, the length
of the stream can be written after the stream.

8.3 Take advantage of combined operators

PDF provides several operators that combine the function of two or more
other operators. For example, PDF defines operators that close (h) and
stroke (S) a path, but also provides an operator that performs both
operations (s). These combined operators should be used whenever
possible. Table 8.1 lists the combined operators provided by PDF. Some
operators in the table require one or more operands; the operands have been
omitted from the table.

PDF Reference Manual April 16, 1996 Chapter 8: General Techniques for Optimizing

174 Chapter 8: General Techniques for Optimizing PDF Files

Table 8.1 Optimized operator combinations

Use… Instead of…

s h S

b h B

TD Td TL

TJ Repeated series of Tj and Td operators

' Td Tj or T* Tj

" Tc Tw Td Tj

Note To both fill and stroke a path, the combination operators must be used.
Using the fill operator followed by the stroke operator does not work. The
fill operator ends the path, leaving nothing for the stroke operator to stroke.
Unlike the PostScript language, PDF does not allow you to save the path,
fill it, restore the path, and stroke it, because the current path is not part of
the PDF graphics state.

8.4 Remove unnecessary clipping paths

Whenever anything is drawn on a page, all marks are made inside the
current clipping path. When a clipping path other than the default (the crop
box) is specified, rendering speed is reduced. If a portion of a page requires
the use of a clipping path other than the default, the default clipping path
should be restored as soon as possible. Text, graphics, and images are all
clipped to the current clipping path, so it is important for the performance of
all three to not use unnecessary clipping paths.

Restoration of a clipping path can be accomplished by saving the graphics
state (including the clipping path) using the q operator before setting the
new clipping path, and subsequently using the Q operator to restore the
previous clipping path as soon as the new clipping path is no longer needed.

Note Remember that the Q operator restores more than just the clipping path.
See Section 7.2, “Graphics state” for a list of the graphics state parameters
restored by the Q operator.

8.5 Omit unnecessary spaces

Spaces are unnecessary before (, after), and before and after [and]. This
slightly reduces the size of files.

PDF Reference Manual April 16, 1996 Chapter 8: General Techniques for Optimizing

8.6 Omit default values 175

8.6 Omit default values

A number of the parameters that affect drawing have default values that are
initialized at the start of every page. (See Sections 7.3, “Graphics state
operators,” 7.4, “Color operators,” and 7.7.2, “Text state operators.”) For
example, the default stroke and fill colors are both black. When drawing, do
not explicitly set a drawing parameter unless the default value is not the
desired value.

Similarly, many PDF objects are represented by dictionaries and some of
the keys in these dictionaries have default values. Omit any keys whose
default value is the desired value.

Omitting unnecessary key–value pairs and graphics and text state operators
reduces the size of a PDF file and the time needed to process it.

8.7 Take advantage of forms

PDF files may contain forms, which are arbitrary collections of PDF
operators that draw text, graphics, or images. The structure of a Form object
is discussed in Section 6.8.6, “XObject resources.” A Form object may be
used to draw the same marks in one or more locations on one or more pages.

Forms can be used, for example, to draw a logo, a heading for stationery, or
a traditional form. The location and appearance of a form is controlled by
the CTM in effect when the form is drawn.

The use of forms can reduce the size of a PDF file. In addition, forms that
contain an XUID can be cached by PDF viewer applications and PostScript
printers, improving rendering speed if the form is used multiple times.

8.8 Limit the precision of real numbers

The pixel size on most monitors is 1/72 of an inch, or 1 unit in default user
space. The dot size on printers and imagesetters generally ranges from 1/
300 of an inch (.24 units) to 1/2400 of an inch (.03 units). For this range of
devices, it suffices to store coordinates to two digits to the right of the
decimal point. However, because coordinates can be scaled, they should be
written using more than two digits, but generally not more than five.
Acrobat Exchange and Acrobat Reader store numbers in a fixed format that
allows 16 bits for a fraction, which is equivalent to four or five decimal
places.

PDF Reference Manual April 16, 1996 Chapter 8: General Techniques for Optimizing

176 Chapter 8: General Techniques for Optimizing PDF Files

Most monitors and printers cannot produce more than 256 shades of a given
color component. Color component values should not be written using more
than four decimal places.

8.9 Write parameters only when they change

Graphics state operators should be written only when the corresponding
graphics state parameters change. Changes to graphics state parameters
typically occur both when the application explicitly changes them and when
the graphics state is restored using the Q operator.

When explicit changes are made to the value of a graphics state parameter,
new and old values of the parameter should be compared with the precision
with which they will be written, not their internal precision.

A pair of q and Q operators is commonly used to bracket a sequence of
operators that uses a non-default clipping path. The q operator saves the
default clipping path, and the Q operator discards the clipping path when it
is no longer needed. However, the q and Q operators save and restore the
entire graphics state, not just the clipping path. To avoid unnecessarily
setting all graphics state parameters to achieve a known state after a Q
operator, an application that produces PDF files may wish to maintain its
own graphics state stack mimicking the PDF graphics state stack. This
enables the application to determine the values of all graphics state
parameters at all times, and only write operators to change graphics state
parameters that do not have the desired value after the Q operator.

8.10 Don’t draw outside the crop box

Objects entirely outside the crop box do not appear on screen or on the final
printout. Nevertheless, if such objects are present in a PDF file, each time
the page is drawn, time is spent determining if any portion of them is
visible. Simply omit any objects that are entirely outside of the crop box,
instead of relying on clipping to keep them from being drawn.

8.11 Consider target device resolution

When producing a PDF file, it is extremely important to consider the device
that is the primary target of the document contained in the file. A number of
decisions may be made differently depending on whether the document will
be primarily viewed on a low-resolution device such as a computer screen
or printed to an extremely high-resolution device such as an imagesetter.

PDF Reference Manual April 16, 1996 Chapter 8: General Techniques for Optimizing

8.12 Share resources 177

If the primary target of the document is a computer screen, users are
generally most interested in small file sizes and fast display, and are willing
to accept somewhat reduced resolution in exchange for those. If, on the
other hand, the primary target is a 1200-dpi imagesetter, file size and
drawing time are not as important as obtaining the highest quality possible.

PDF, like the PostScript language, allows graphics objects to be drawn at an
arbitrary size and scaled to the desired size. It is often convenient to design
objects at a standard size and scale them for a particular situation. Greatly
reducing the size of an object, however, can result in unnecessary detail and
slow drawing. Choose a level of detail that is appropriate for both monitors
and common printer resolutions. In some cases it may be appropriate to
replace a complex element of a page with an equivalent image.

Decisions related to the target device primarily affect text, images, and
blends. They are discussed further in the following chapters.

8.12 Share resources

Typically, many pages of a document share the same set of fonts. A PDF file
will be smaller, display faster, and use less memory if the page’s Resources
dictionaries refer to the same Font objects. Similarly, if multiple fonts use
the same custom encoding, one Encoding object should be shared. The
same holds true for ProcSets—if multiple pages require the same
combination of ProcSets, they should refer to the same ProcSet array.

8.13 Store common Page attributes in the Pages object

Several Page attributes need not be specified directly in the Page object, but
can be inherited from a parent Pages object. Attributes that are the same for
all pages in a document may be written once in the root Pages object. If a
particular page has a different value, it can directly specify that value and
override its parent’s value. For example, all pages except one in a document
might have the same media box. This value can be stored in the root Pages
object, and the media box for the odd-size page can be specified directly in
its Page object.

PDF Reference Manual April 16, 1996 Chapter 8: General Techniques for Optimizing

178 Chapter 8: General Techniques for Optimizing PDF Files

PDF Reference Manual April 16, 1996 Chapter 9: Optimizing Text

179

CHAPTER 9

Optimizing Text

Most text optimizations relate to using appropriate operators and taking
advantage of the automatic line, character, and word spacing operators
supported by PDF. A few optimizations relate to searching.

9.1 Don’t produce unnecessary text objects

A PDF viewer application initializes the text environment at the beginning
of each text object, and this initialization takes some time. Minimizing the
number of text objects used reduces this overhead and reduces file size.

It is not necessary to end one text object and begin another whenever the
text matrix is changed using the Tm operator. Instead, the text matrix can be
changed inside the text object. For example, to create a text object
containing several lines of text at various rotations, the following text object
could be used:

Example 9.1 Changing the text matrix inside a text object

BT
/F13 24 Tf
200 100 Td
(Horizontal text) Tj
0.866 0.5 -0.5 0.866 186 150 Tm
(Text rotated 30 degrees counterclockwise) Tj
0.5 0.866 -0.866 0.5 150 186 Tm
(Text rotated 60 degrees counterclockwise) Tj
0 1 -1 0 100 200 Tm
(Text rotated 90 degrees counterclockwise) Tj
ET

PDF Reference Manual April 16, 1996 Chapter 9: Optimizing Text

180 Chapter 9: Optimizing Text

This sequence draws the text in whatever font has the name F13, at a size of
24 points. Keep in mind that the matrix specified using the Tm operator
replaces the text matrix; it is not concatenated onto the text matrix.

Similarly, font and most other graphics state parameters can change inside a
text object. There is one exception—if one of the clipping text-rendering
modes is used, the text object must end before changing the text-rendering
mode again.

9.2 Use automatic leading

Several of the text string operators make use of the text leading setting to
position the drawing point at the start of the next line of text. This makes
generating multiple lines of text easy and compact. Use automatic leading
whenever possible. The ' and " operators automatically move to the next
line of text, as defined by the leading, and the T* operator can be used to
manually move to the next line of text. Define leading using either the TD or
TL operators.

Note Don’t use the TD or TL operator unless you use a text operator that has
automatic leading.

For example, the text object in Example 9.2 can be more efficiently written
using automatic leading and the ' operator as in Example 9.3.

Example 9.2 Multiple lines of text without automatic leading

BT
/F13 12 Tf
200 400 Td
(First line of text) Tj
0 -14 Td
(Second line of text) Tj
0 -14 Td
(Third line of text) Tj
0 -14 Td
(Fourth line of text) Tj
ET

PDF Reference Manual April 16, 1996 Chapter 9: Optimizing Text

9.2 Use automatic leading 181

Example 9.3 Multiple lines of text using automatic leading

BT
/F13 12 Tf
200 414 Td
14 TL
(First line of text) '
(Second line of text) '
(Third line of text) '
(Fourth line of text) '
ET

Note in Example 9.3 that the initial point has been offset vertically by one
line. This is because the ' operator moves to the next line before drawing the
text.

If it is not possible to use either the ' or " operators to draw a line of text (for
example, because the TJ operator is used to adjust spacing between
particular characters within the line), you can still use the T* operator, which
advances the point to the beginning of the next line, using the current
leading. For example, the text object in Example 9.4 can be more efficiently
written using automatic leading and the T* operator, as in Example 9.5.

Example 9.4 TJ operator without automatic leading

BT
/F13 12 Tf
200 700 Td
[(First line) 100 (of text)] TJ
0 -14 Td
[(Second line) 50 (of text)] TJ
0 -14 Td
[(Third line) 40 (of text)] TJ
0 -14 Td
[(Fourth line) 50 (of text)] TJ
ET

PDF Reference Manual April 16, 1996 Chapter 9: Optimizing Text

182 Chapter 9: Optimizing Text

Example 9.5 Use of the T* operator

BT
/F13 12 Tf
200 700 Td
14 TL
[(First line) 100 (of text)] TJ
T*
[(Second line) 50 (of text)] TJ
T*
[(Third line) 40 (of text)] TJ
T*
[(Fourth line) 50 (of text)] TJ
ET

Finally, you can set the leading in either of two ways. The TL operator sets
the leading directly, while the TD operator sets the leading as a side effect of
moving the line start position. The methods shown in Example 9.6 and
Example 9.7 are equivalent.

Example 9.6 Using the TL operator to set leading

BT
/F13 12 Tf
200 500 Td
14 TL
[(First line) 100 (of text)] TJ
T*
[(Second line) 50 (of text)] TJ
T*
[(Third line) 40 (of text)] TJ
T*
[(Fourth line) 50 (of text)] TJ
ET

PDF Reference Manual April 16, 1996 Chapter 9: Optimizing Text

9.3 Take advantage of text spacing operators 183

Example 9.7 Using the TD operator to set leading

BT
/F13 12 Tf
200 500 Td
[(First line) 100 (of text)] TJ
0 -14 TD
[(Second line) 50 (of text)] TJ
T*
[(Third line) 40 (of text)] TJ
T*
[(Fourth line) 50 (of text)] TJ
ET

When using the TD operator to set the leading, keep in mind that any
horizontal component supplied as an operand to TD affects the movement of
the drawing point, but not the leading. As a result, the commands 0 –14 TD
and 10 –14 TD both set the leading to 14, although in the latter case the
drawing point is ten units to the right of where it is in the former case.

9.3 Take advantage of text spacing operators

The Tc and Tw operators adjust the spacing between characters and the
spacing between words, respectively. Use these operators to make constant
adjustments on one or more lines of text. Example 9.8 shows a text object in
which one half unit of space has been added between characters on a line
and two units between words.

Example 9.8 Character and word spacing using the Tc and Tw operators

BT
/F13 12 Tf
200 514 Td
14 TL
.5 Tc
2 Tw
(Line of text) '
(Line of text) ’
ET

Equivalently, the same two lines of text could be produced using the "
operator instead of the Tc, Tw, and ' operators, as shown in Example 9.9.

PDF Reference Manual April 16, 1996 Chapter 9: Optimizing Text

184 Chapter 9: Optimizing Text

Example 9.9 Character and word spacing using the " operator

BT
/F13 12 Tf
200 514 Td
14 TL
2 .5 (Line of text) "
(Line of text) ’
ET

Using the " operator is preferable if entire lines of text are being written,
because it is more compact. If more than one text string operator is used to
produce a line of text, the " operator can be used to position the first string
of the line and Tj or TJ for subsequent strings. Remember that the " operator
changes the character and word spacing settings for subsequent Tj, TJ, and '
operators.

9.4 Don’t replace spaces between words

When deciding how to represent a line of text in a PDF file, keep in mind
that text can be searched. In order to search text accurately, breaks between
words must be found. For this reason, it is best to leave spaces in strings,
instead of replacing them with an operator that moves the drawing point.

For example, text containing three words could be drawn by:

(A few words) Tj

Or, replacing the spaces between words with movements of the drawing
point:

[(A) -300 (few) -300 (words)] TJ

The first method is preferred.

9.5 Use the appropriate operator to draw text

In most cases, a line of text can be represented in several ways. When
deciding among the various methods, try to draw the line using as few
operations as possible. Table 9.1 provides guidelines for selecting the
appropriate text string operator.

PDF Reference Manual April 16, 1996 Chapter 9: Optimizing Text

9.6 Use the appropriate operator to position text 185

Table 9.1 Comparison of text string operators

Use When…

' Complete line of text can be drawn together
No need for individual character spacings

" Complete line of text can be drawn together
Non-zero character or word spacings on each line
No need for individual character spacings

Tj Multiple text operators per line of text
No need for individual character spacings

TJ Individual character spacings needed

When laying out a line of text with non-default character spacings, such as
kerned text, use the TJ operator rather than a series of pairs of Tj and Td
operators. For example, both of the following lines produce the same output
for the Helvetica Bold Oblique font at a size of 12 points:

(A f) Tj 15.64 0 Td (ew w) Tj 28.08 0 Td (ords) Tj
[(A f) 30 (ew w) 50 (ords)] TJ

The second method is preferred because it minimizes the size of the file and
the number of text operators.

9.6 Use the appropriate operator to position text

The TD, Td, Tm, and T* operators each change the location at which
subsequent text is drawn. Use each of these operators under different
circumstances. Table 9.2 provides guidelines for selecting the appropriate
text positioning operator.

PDF Reference Manual April 16, 1996 Chapter 9: Optimizing Text

186 Chapter 9: Optimizing Text

Table 9.2 Comparison of text positioning operators

Use When…

Td Changing only the text location

TD Changing text location and leading

Tm Rotating, scaling, or skewing text

T* Moving to start of next line of text, as defined by
the leading

9.7 Remove text clipping

After text has been used as a clipping path through one of the clipping text-
rendering modes (4–7), the original clipping path must be restored.
Restoration of the original clipping path is accomplished using the q and Q
operators to save and subsequently restore the clipping path, respectively.

Neither q nor Q may appear inside a text object. Save the original clipping
path using the q operator before beginning the text object in which a new
clipping path is set. When you want to restore the original clipping path, the
text object must be ended using the ET operator. Then, use the Q operator to
restore the original clipping path. Following this, another text object can be
entered if more text is to be drawn.

Example 9.10 illustrates the proper way to save and restore a clipping path
when using one of the clipping text-rendering modes.

Example 9.10 Restoring clipping path after using text as clipping path

q
BT
/F13 48 Tf
200 414 Td
%Set clip path
0.25 w
5 Tr
(Clip) Tj
ET
BT
200 450 Td
/F13 6 Tf
0 Tr

PDF Reference Manual April 16, 1996 Chapter 9: Optimizing Text

9.8 Consider target device resolution 187

6 TL
(ClipClipClipClipClipClipClipClip) '
(ClipClipClipClipClipClipClipClip) '
(ClipClipClipClipClipClipClipClip) '
(ClipClipClipClipClipClipClipClip) '
(ClipClipClipClipClipClipClipClip) '
(ClipClipClipClipClipClipClipClip) '
(ClipClipClipClipClipClipClipClip) '
(ClipClipClipClipClipClipClipClip) '
(ClipClipClipClipClipClipClipClip) '
ET
Q
BT
/F13 12 Tf
175 395 Td
(Default Clipping Restored) Tj
ET

Figure 9.1 shows the output produced by this example when F13 is
Helvetica Bold Oblique. The presence of the words “Default Clipping
Restored” at the bottom of the figure demonstrates that the clipping path has
been restored to its previous value.

Figure 9.1 Restoring clipping path after clipping to text

9.8 Consider target device resolution

Although text in a PDF file is resolution-independent (unless a document
contains bitmapped Type 3 fonts), there are still reasons to consider the
resolution of the target device. Text positioning, in particular, may depend
on the primary target device.

Default Clipping Restored

ClipClipClipClipClipClipClipClip

ClipClipClipClipClipClipClipClip

ClipClipClipClipClipClipClipClip

ClipClipClipClipClipClipClipClip

ClipClipClipClipClipClipClipClip

ClipClipClipClipClipClipClipClip

ClipClipClipClipClipClipClipClip

ClipClipClipClipClipClipClipClip

ClipClipClipClipClipClipClipClip

PDF Reference Manual April 16, 1996 Chapter 9: Optimizing Text

188 Chapter 9: Optimizing Text

It is possible to individually position each character in a string using, for
example, the TJ operator. This allows precise layout of text. However,
adjusting the location of each character increases the size of a PDF file
because the positioning must be specified by numbers that are otherwise not
needed. In addition, drawing text is slower when each character is
individually positioned. As mentioned in Section 8.11, “Consider target
device resolution,” if the primary target is a low-resolution device such as a
computer screen, producing a small file and one that draws quickly is
generally more important than having extremely precise positioning. If the
primary target is an imagesetter, extremely precise positioning is generally
the primary concern.

As an example of the choices that can be made, suppose the positions of
each character on a 60-character line are adjusted from their normal
positions by an amount corresponding to 0.01 pixels on a 72 pixel per inch
computer screen. The total adjustment across the entire line is just over half
a pixel on the screen. If the document is primarily intended to be viewed on
a computer screen, omitting the adjustments would make sense because
such a small adjustment is invisible. The result would be a smaller file that
can be drawn more quickly. On the other hand, the same adjustment
corresponds to 10 pixels on a 1200 pixel per inch imagesetter. If the primary
target is such an imagesetter, it may be worthwhile retaining the individual
position adjustment. Note that precise text positioning is most important for
justified text, where positioning errors are easily detected by users.

PDF Reference Manual April 16, 1996 Chapter 10: Optimizing Graphics

189

CHAPTER 10

Optimizing Graphics

10.1 Use the appropriate color-setting operator

Use 0 g to set the fill color to black, rather than the equivalent, but longer,
0 0 0 rg or 0 0 0 1 k. Similarly, 0 G should be used to set the stroke color
to black instead of 0 0 0 RG or 0 0 0 1 K. In general, if a color contains
equal color components, use either g or G, as appropriate. For example, use
.8 G instead of .8 .8 .8 RG.

10.2 Defer path painting until necessary

When representing graphics in a PDF file, each path segment can be treated
as a separate path or a number of segments can be grouped together into a
single path. Wherever possible, group segments together into a single path.
This reduces the size of the file and improves drawing speed. However, a
path should not contain more than approximately 1500 segments. For
further information, see Appendix B of the PostScript Language Reference
Manual, Second Edition.

Because a path can only be filled with a single color and stroked with a
single color, line width, miter limit, and line cap style, a new path must be
started whenever one or more of these values is changed.

As an illustration, Example 10.1 and Example 10.2 produce identical
output, but the technique shown in Example 10.2 is preferred. Note that
Example 10.2 still contains two paths. These paths cannot be combined,
because they have different stroke colors.

PDF Reference Manual April 16, 1996 Chapter 10: Optimizing Graphics

190 Chapter 10: Optimizing Graphics

Example 10.1 Each path segment as a separate path

.5 0 1 RG
100 100 m
100 200 l
S
100 200 m
200 200 l
S
200 200 m
200 100 l
S
200 100 m
100 100 l
S
0 .2 .4 RG
300 300 m
400 300 l
S

Example 10.2 Grouping path segments into a single path

.5 0 1 RG
100 100 m
100 200 l
200 200 l
200 100 l
s
0 .2 .4 RG
300 300 m
400 300 l
S

10.3 Take advantage of the closepath operator

The h (closepath) operator closes the current subpath by drawing a
straight segment from the endpoint of the last segment drawn to the first
point in the subpath. When the last segment in a path is straight, use the h
operator to draw the final segment and close the path.

Two inefficient ways of closing a path commonly occur. The first, shown in
Example 10.3, uses the l operator to draw the final segment, followed by the
h operator to close the path.

PDF Reference Manual April 16, 1996 Chapter 10: Optimizing Graphics

10.4 Don’t close a path more than once 191

Example 10.3 Using redundant l and h operators to close a path
inefficiently

100 100 m
100 200 l
200 200 l
200 100 l
100 100 l
h

The second, shown in Example 10.4, uses the l operator to draw the final
segment of the path.

Example 10.4 Using the l operator to close a path inefficiently

100 100 m
100 200 l
200 200 l
200 100 l
100 100 l

Example 10.5 shows the correct way of closing a path with a straight
segment, using the h operator.

Example 10.5 Taking advantage of the h operator to close a path

100 100 m
100 200 l
200 200 l
200 100 l
h

If the h operator is not used, the appropriate line join will not occur at the
juncture of the path’s initial and final point.

10.4 Don’t close a path more than once

Close a path only one time. Don’t use the h operator before a path painting
operator that implicitly closes the path: the n, b, f, f* and s operators. In
addition, the h operator should not be used with the re operator, because the
re operator produces a path that is already closed.

For example, do not use a sequence as in Example 10.6, because the s
operator automatically closes the path before stroking it.

PDF Reference Manual April 16, 1996 Chapter 10: Optimizing Graphics

192 Chapter 10: Optimizing Graphics

Example 10.6 Improperly closing a path: multiple path closing operators

150 240.7 m
253.2 200 l
180.4 150 l
75.4 134.5 l
h
s

Instead, use the sequence:

Example 10.7 Properly closing a path: single path closing operator

150 240.7 m
253.2 200 l
180.4 150 l
75.4 134.5 l
s

10.5 Don’t draw zero-length lines

When generating graphics from a computer program, it is not uncommon to
produce line segments of zero length. Such line segments produce no useful
output and should be eliminated before the PDF file is written.

Line segments of zero length may arise when straight line segments are
used to approximate a curve. Generally, the programmer wants to make sure
that the approximation is close to the actual curve, and so takes small steps
in approximating the curve. Occasionally the steps are small enough that
they produce segments of zero length after the coordinates have been
converted to the format in which they are written to the file. (See Section
8.8, “Limit the precision of real numbers.”)

Zero-length line segments may also be generated when making a two-
dimensional projection of a three-dimensional object. Lines in the three-
dimensional object that go directly into the page have zero length in the
two-dimensional projection.

PDF Reference Manual April 16, 1996 Chapter 10: Optimizing Graphics

10.6 Make sure drawing is needed 193

10.6 Make sure drawing is needed

When generating graphics from a computer program, test before writing the
graphics to a PDF file to ensure that the graphics actually make new marks
on the page and do not simply draw over marks already made.

Redundant graphics typically arise when making a two–dimensional
projection of a three–dimensional object. It is possible to end up with
several images that lie on top of one another after being projected.

10.7 Take advantage of rectangle and curve operators

Use the re operator to draw a rectangle, instead of the corresponding
sequence of m and l operators.

Curves can be drawn in one of two ways; either by approximating the curve
with a sequence of straight segments or by using the curve operators present
in PDF. Although approximating curves using straight segments is easy, it
typically results in a very large amount of data. Use the curve operators (c,
v, y) to represent curves in PDF files. Doing so results in a smaller file that
can be rendered more quickly.

An algorithm for automatically fitting an arbitrary set of points with a cubic
Bézier curve, like those used by PDF, can be found in the series of books
called Graphics Gems. The algorithm described in Graphics Gems begins
by assuming the points supplied can be fit by a single cubic Bézier curve,
with the two endpoints of the Bézier curve being the first and last data
points, and the Bézier control points calculated from the approximate
tangents at the endpoints of the supplied data. The algorithm minimizes the
sum of the squares of the distances between the data points and the curve
being fit by moving the control points. If a satisfactory fit cannot be
obtained, the data points are separated into two groups at the point with the
greatest distance between the curve being fit and the actual data point, and
two separate Bézier curves are fit to the two sets of points. This fitting and
splitting is repeated until a satisfactory fit is obtained. See the Bibliography
for more information.

PDF Reference Manual April 16, 1996 Chapter 10: Optimizing Graphics

194 Chapter 10: Optimizing Graphics

10.8 Coalesce operations

Graphics generated by a computer program occasionally contain a group of
operations that can be combined into a single operation. These can arise, for
example, when a curve is approximated by a series of short straight
segments. Significant sections of the curve being approximated may be
effectively straight, but the approximation program typically does not
realize this and continues to approximate the curve as a sequence of small
line segments, instead of combining collinear segments.

For example, the sequence shown in Example 10.8 contains a number of
segments that should be combined. Specifically, the first four l operators
simply draw one straight line segment and should be combined.

Example 10.8 Portion of a path before coalescing operations

100 100 m
100 101 l
100 102 l
100 103 l
100 104 l
101 105 l

The entire sequence can be replaced by the equivalent and more efficient
sequence in Example 10.9.

Example 10.9 Portion of a path after coalescing operations

100 100 m
100 104 l
101 105 l

PDF Reference Manual April 16, 1996 Chapter 11: Optimizing Images

195

CHAPTER 11

Optimizing Images

Sampled images typically require more memory and take more time to
process and draw than any other graphics object element of a page. By
carefully choosing an appropriate resolution, number of bits per color
component, and compression filter, it is possible to significantly enhance
image performance.

11.1 Preprocess images

PDF provides operators that transform and clip images. These operators
should be used with care. For example, performance often improves if
rotation and skewing of an image is performed before the image is placed in
the PDF file, rather than by the PDF viewer application. Similarly, if an
image is clipped, it is best to reduce the image to the smallest dimensions
possible before placing the image in the PDF file, perhaps eliminating the
need for clipping.

11.2 Match image resolution to target device resolution

If a grayscale or color image will primarily be viewed on computer screens
(which typically have resolutions between 70–100 pixels per inch) or
printed on typical color and monochrome printers (which have resolutions
of 300 dpi and default halftone screens of approximately 60 lines per inch),
there is no point in producing the image at 300 samples per inch. Most of
the information in the higher resolution image will never be seen, the image
will contain at least nine times as much data as it needs to (90,000 samples
per square inch versus a maximum of 10,000 samples per square inch), and
will draw more slowly.

Monochrome images can be stored at higher resolutions of 200 to 300 dpi.
This resolution can be achieved on typical printers.

PDF Reference Manual April 16, 1996 Chapter 11: Optimizing Images

196 Chapter 11: Optimizing Images

11.3 Use the minimum number of bits per color
component

The amount of data needed to represent an image increases as the number of
bits per color component increases. This is very important to consider when
deciding how many bits per component to use for an image.

If an image requires continuous colors, it might very well need to use 8 bits
per color component. However, many graphs, plots, and other types of
drawings do not require continuous tone reproduction and are completely
satisfactory with a small number of bits per color component.

11.4 Take advantage of indexed color spaces

If an image contains a relatively small number of colors, indexed color
spaces can be used to reduce the amount of data needed to represent the
image. In an indexed color space, the number of bits needed to represent
each sample in an image is determined by the total number of colors in the
image rather than by the precision needed to specify a single color.

Most computers currently have displays that support a limited number of
colors. For example, it is very common for color displays on the Macintosh
computer to provide no more than 256 colors, and many computers running
the Microsoft Windows environment provide only 16 colors. On such
devices, little loss of image quality will occur if 24-bit color images are
replaced by 8-bit indexed color images.

As an example of the compression possible using indexed color spaces,
suppose an image contains 256 different colors. Each pixel’s color can then
be encoded using only 8 bits, regardless of whether the colors in the image
are 8-bit grayscale, 24-bit RGB, or 32-bit CMYK. If the colors are 24-bit
RGB, using an indexed color space instead of the RGB values would reduce
the amount of data needed to represent the image by approximately a factor
of three: 24 bits per pixel using an RGB color space versus 8 bits per pixel
using an indexed color space. The reduction is not exactly three because the
use of an indexed color space requires that a lookup table, containing the list
of colors used in the image, be written to the file. For a large image, the size
of this lookup table is insignificant compared to the image and can be
ignored. For a small image, the size of the lookup table must be included in
the calculation. The size of the lookup table can be calculated from the
description of indexed color spaces in Section 6.8.5, “Color space
resources.”

PDF Reference Manual April 16, 1996 Chapter 11: Optimizing Images

11.5 Use the DeviceGray color space for monochrome images 197

11.5 Use the DeviceGray color space for monochrome
images

For a bitmap (monochrome) image, use the DeviceGray color space
instead of DeviceRGB, DeviceCMYK, or Indexed color space. In
addition, the BitsPerComponent attribute for bitmap images should be 1.
These settings significantly reduce the amount of data used to represent the
image.

Using a different color space or a larger BitsPerComponent greatly
increases the amount of image data. As an extreme example, a bitmap image
represented using a DeviceCMYK color space with 8 bits per component
contains 32 times as much data as necessary: four color components with 8
bits per component, instead of a single color component with 1 bit per
component.

11.6 Use in-line images appropriately

In-line images occupy less disk space and memory than image resources.
However, image resources give viewer applications more flexibility in
managing memory—the data of an image resource can be read on demand,
while an in-line image must be kept in memory together with the rest of a
page’s contents.

PDF Writer and the Acrobat Distiller application represent images with less
than 4K of data as in-line images until a total of 32K of in-line data are
present on a page. Once this limit is reached, subsequent images on that
page are represented in-line only if they are smaller than 1K.

11.7 Don’t compress in-line images unnecessarily

In-line images should not always be compressed and converted to ASCII.
Specifically, in-line images should not be compressed if the Contents stream
of the page on which the in-line image appears is itself compressed.

Because an in-line image is located completely within the Contents stream
of the page, it is automatically passed through the compression and ASCII
conversion filters specified for the page’s Contents stream. The specification
of an additional compression or ASCII conversion filter in the in-line image
itself under these circumstances results in the in-line image being
compressed and converted to ASCII twice. This does not result in additional
compression and slows down the decoding of the image.

PDF Reference Manual April 16, 1996 Chapter 11: Optimizing Images

198 Chapter 11: Optimizing Images

11.8 Choose the appropriate filters

The selection of filters for image streams can be confusing, although a few
relatively simple rules can greatly simplify the task. In PDF files, filters
compress data or encode binary data as ASCII.

The order of filters specified when data is decoded must be the opposite of
the order in which the filters were applied when the data was encoded. For
example, if data is encoded first using LZW and then by ASCII base-85,
during decoding the ASCII base-85 filter must be used before the LZW
decoding filter. In a stream object, the decoding filters and the order in
which they are applied are specified by the Filter key. The example would
appear as:

/Filter [/ASCII85Decode /LZWDecode]

Any time binary data is stored in a PDF file, the last encoding filter applied
(and therefore the first decoding filter specified in the stream’s Filter key)
must be one of the two binary-to-ASCII conversion filters supported by
PDF: ASCII hexadecimal and ASCII base-85. Between these two, the
ASCII base-85 encoding, which is decoded by the ASCII85Decode filter, is
preferred because it produces a much smaller expansion in the amount of
data than ASCII hexadecimal encoding does.

PDF supports several compression filters that reduce the size of data written
into a PDF file. The compression filters can be broken down into two
classes: lossless and lossy. A lossless filter is one in which the process of
encoding and decoding results in no loss of information: the decoded data is
bit-by-bit identical to the original data. For a lossy filter, the process of
encoding and decoding results in a loss of information: the decoded data is
not bit-by-bit identical to the original data. Lossy filters can be used when
the resulting loss of information is not visually significant. The JPEG filter
supported by PDF is a lossy filter.

JPEG encoding, which can be decoded by the DCTDecode filter, provides
very significant compression of color and grayscale images, but because it is
a lossy compression it is not appropriate in all circumstances. Screenshots,
in particular, are often unacceptable when JPEG encoded. This happens
because each pixel in a screenshot is usually significant, and the loss or
alteration of just a few pixels can drastically alter the appearance of the
screenshot.

Figure 11.1 shows the effect of JPEG encoding on screenshots. The images
shown in the figure are magnified by a factor of two to show the changes
due to the compression. The 8×8 pixel blocks used in JPEG encoding

PDF Reference Manual April 16, 1996 Chapter 11: Optimizing Images

11.8 Choose the appropriate filters 199

appear clearly in the pattern inside the icon encoded using a high JPEG
compression. The definitions of high, medium, and low JPEG compression
are those used by the Acrobat Distiller program. The amount of data in the
image from which the figure is taken is: 153,078 bytes with no JPEG
encoding, 28,396 bytes with low compression JPEG encoding, 16,944 bytes
with medium compression JPEG encoding, and 10,679 bytes with high
compression JPEG encoding. All these sizes are for the data after it has been
ASCII base-85 encoded.

Figure 11.1 Effect of JPEG encoding on a screenshot

No JPEG compression Low JPEG compression

Medium JPEG compression High JPEG compression

Unlike screenshots, the effect of JPEG encoding on continuous-tone images
is typically acceptable, particularly when high compression is not
demanded. Figure 11.2 illustrates the effect. The image shown in the figure
has been magnified by a factor of two to make the effect of JPEG encoding
more readily observable. The version obtained using high compression
clearly shows the 8×8 pixel blocks used in JPEG encoding. As in the
previous example, the definitions of high, medium, and low JPEG
compression are those used by the Acrobat Distiller program, and the sizes
shown are for the data after it has been ASCII base-85 encoded.

PDF Reference Manual April 16, 1996 Chapter 11: Optimizing Images

200 Chapter 11: Optimizing Images

Figure 11.2 Effect of JPEG encoding on a continuous-tone image

No JPEG compression; 20,707 bytes Low JPEG compression; 7,717 bytes

Medium JPEG compression; High JPEG compression;
3,470 bytes 1,997 bytes

In addition to JPEG, PDF supports several lossless compression filters that
may be used for images. Guidelines for selecting among them are
summarized in Table 11.1.

PDF Reference Manual April 16, 1996 Chapter 11: Optimizing Images

11.8 Choose the appropriate filters 201

Table 11.1 Comparison of compression filters for images

Use When…

DCTDecode Image is grayscale or color
Decompressed image doesn’t need to be bit-by-bit
identical to original image

CCITTFaxDecode Image is monochrome (bitmap)
Group 4 encoding should be used unless the
application generating the file does not support
Group 4 encoding

RunLengthDecode Image contains many groups of identical bytes,
such as an 8-bit grayscale image with many areas
of same gray level. Should rarely be used

LZWDecode Images that cannot use DCTDecode and that do
not compress well using either CCITT or run
length encoding

PDF Reference Manual April 16, 1996 Chapter 11: Optimizing Images

202 Chapter 11: Optimizing Images

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

203

CHAPTER 12

Clipping and Blends

Clipping restricts the areas on a page where marks can be made. It is similar
to using a stencil when painting or airbrushing. A stencil with one or more
holes in it is placed on a page. As long as the stencil remains in place, paint
only reaches the page through the holes in the stencil. After the stencil is
removed, paint can again be applied anywhere on the page. More than one
stencil may be used in the production of a single page, and if a second
stencil is added before the first one is removed, paint only reaches the page
where there are holes in both stencils.

Similarly, in producing a PDF page, one or more clipping paths may be
used. If a clipping path is not removed before a second clipping path is
applied, the resulting clipping path is the intersection of the two paths.

Clipping paths may be specified in two distinct ways: paths and text. These
provide clipping that affects all subsequent marking operations until the
clipping path is explicitly changed. An example of each type of clipping is
provided in the following sections.

Note Whenever a clipping path is no longer needed, the default clipping path
should be restored, as described in Section 8.4, “Remove unnecessary
clipping paths.”

Image masks do not provide clipping as paths and text do, but they can be
thought of as specifying a bitmap clipping template that is placed on the
page, painted with a color, and then immediately removed. The differences
between images and image masks are discussed.

Often, page descriptions contain blends, smooth changes of color used as a
background or to fill an object. Because blends typically fill objects, and
clipping is needed in order to accomplish this, blends are also described in
this chapter. A useful way to produce blends using images is provided.

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

204 Chapter 12: Clipping and Blends

12.1 Clipping to a path

As described in Section 7.5.3, “Path clipping operators,” the W and W*
operators can make any path a clipping path. To do this, insert the operator
between the path segment operators and one of the path painting operators
described in Section 7.5.2, “Path painting operators.”

Figure 12.1 shows the effect of clipping to a region in the shape of a four-
pointed star. In the figure, the graphics are shown with and without the star
as a clipping path. To draw the figure, the star is first stroked and set to be
the current clipping path. A series of lines is then drawn through the star,
and the points of the star are filled using arcs.

Figure 12.1 Clipping to a path

Without clipping to star With clipping to star

Note When a path is stroked and used as the current clipping path, remember that
the stroke extends half the line width on each side of the path, while
subsequent drawing is clipped to the path itself. Because of this, subsequent
clipped drawing operations can draw over the “inner half” of the stroke.

The PDF operations needed to produce this output are shown in Example
12.1. The star is first drawn using a series of l operators. It is set to be a
clipping path using the W operator and stroked using the s operator. Next, a
series of lines is drawn across the star using the m and l operators. The lines
have different gray levels (set by the G operator) and line widths (set by the
w operator). Because each line has a different width and color, each must be
stroked (using the S operator) individually. To generate the non-clipped
portion of the figure, the only change made to the PDF files was to remove
the W operator.

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

12.1 Clipping to a path 205

Example 12.1 Clipping to a path

%Draw outline of star
391 392 m
370 450 l
311 472 l
370 494 l
391 552 l
412 494 l
471 472 l
412 450 l
W
s
%Draw lines
.6 G 2 w 311 502 m 471 502 l S
.5 G 3 w 311 492 m 471 492 l S
.4 G 4 w 311 482 m 471 482 l S
.3 G 5 w 311 472 m 471 472 l S
.4 G 4 w 311 462 m 471 462 l S
.5 G 3 w 311 452 m 471 452 l S
.6 G 2 w 311 442 m 471 442 l S
%Draw and fill circles on endpoints
0.6 g
340 443 m
357 460 357 486 341 502 c
311 472 l
f
421 422 m
405 438 379 438 362 421 c
391 392 l
f
442 501 m
425 484 425 458 441 442 c
471 472 l
f
361 522 m
377 506 403 506 420 523 c
391 552 l
f

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

12.2 Clipping to text 206

12.2 Clipping to text

Several of the text rendering modes described in Section 7.6.6, “Text
rendering mode” allow text to be used as a clipping path. In particular,
modes 4 through 7 can be used to clip subsequent drawing to the shapes of
one or more characters.

Figure 12.2 shows the word “and” used as a clipping path. The word is first
drawn as stroked and clipped text. Following this, a series of lines
containing various ampersands is drawn on top of the word. Only those
ampersands contained inside the clipping path defined by the word are
visible. The font used for the word “and” is Poetica® Chancery III. The font
used for the ampersands is Poetica Ampersands.

Figure 12.2 Using text as a clipping path

Example 12.2 shows the page description used to produce Figure 12.2. In
the example, the font named F6 is Poetica Ampersands and the font named
F24 is Poetica Chancery III.

Example 12.2 Using text as a clipping path

BT
100 500 Td
%Draw the word "and", stroke it and use it as a clipping path
/F24 144 Tf
0.25 w
5 Tr
(and) Tj
ET
BT
%Select Poetica Ampersands font

vVwWxXyYzZ123456aAbBcCdDeEfFgGhHiIjJkKlLmMnNoO
pPqQrRsStTuUvVwWxXyYzZ123456aAbBcCdDeEfFgGhH
jJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ123456

AbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTu
vVwWxXyYzZ123456aAbBcCdDeEfFgGhHiIjJkKlLmMnNoO
pPqQrRsStTuUvVwWxXyYzZ123456aAbBcCdDeEfFgGhH
jJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ123456

AbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTu
vVwWxXyYzZ123456aAbBcCdDeEfFgGhHiIjJkKlLmMnNoO
pPqQrRsStTuUvVwWxXyYzZ123456aAbBcCdDeEfFgGhH
jJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ123456

AbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTu
vVwWxXyYzZ123456aAbBcCdDeEfFgGhHiIjJkKlLmMnNoO
pPqQrRsStTuUvVwWxXyYzZ123456aAbBcCdDeEfFgGhH
jJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ123456

AbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTu
vVwWxXyYzZ123456aAbBcCdDeEfFgGhHiIjJkKlLmMnNoO
pPqQrRsStTuUvVwWxXyYzZ123456aAbBcCdDeEfFgGhH
jJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ123456

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

12.2 Clipping to text 207

/F6 6 Tf
100 615 Td
0 Tr
6 TL
%Draw lines of ampersands
(aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuU) '
(vVwWxXyYzZ123456aAbBcCdDeEfFgGhHiIjJkKlLmMnNoO) '
(pPqQrRsStTuUvVwWxXyYzZ123456aAbBcCdDeEfFgGhH)'
(jJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ123456) '
(aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuU) '
(vVwWxXyYzZ123456aAbBcCdDeEfFgGhHiIjJkKlLmMnNoO) '
(pPqQrRsStTuUvVwWxXyYzZ123456aAbBcCdDeEfFgGhH) '
(jJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ123456) '
(aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuU) '
(vVwWxXyYzZ123456aAbBcCdDeEfFgGhHiIjJkKlLmMnNoO) '
(pPqQrRsStTuUvVwWxXyYzZ123456aAbBcCdDeEfFgGhH) '
(jJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ123456) '
(aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuU) '
(vVwWxXyYzZ123456aAbBcCdDeEfFgGhHiIjJkKlLmMnNoO) '
(pPqQrRsStTuUvVwWxXyYzZ123456aAbBcCdDeEfFgGhH) '
(jJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ123456) '
(aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuU) '
(vVwWxXyYzZ123456aAbBcCdDeEfFgGhHiIjJkKlLmMnNoO) '
(pPqQrRsStTuUvVwWxXyYzZ123456aAbBcCdDeEfFgGhH) '
(jJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ123456) '
ET

After beginning a text object by using the BT operator, the point at which
text will be drawn is set using the Td operator. Following this, the font
(named F24) and the size (144 points) are set using the Tf operator, the
linewidth for the stroke is set to 0.25 units using the w operator, and the
stroked clipping text rendering mode (mode 5) is selected using the Tr
operator. The word “and” is then drawn using the Tj operator. Next, the text
object is ended using the ET operator. This is necessary in order to draw text
using a different rendering mode. Following this, another text object is
started, the ampersand font (named F6) and the size (6 points) are set, the
position where text will be drawn is moved, the filled text rendering mode
(mode 0) is selected, and the line leading is set to 6 points using the TL
operator. Finally, the ampersands are drawn by a series of ' operators, and
the text object ends.

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

208 Chapter 12: Clipping and Blends

12.3 Image masks

Although image masks do not provide clipping as described above, they can
be thought of as operating as follows: a bitmap image defines the clipping
path, where 1s and 0s are considered to be holes and masks. The rectangle
containing the bitmap is painted with the current fill color. Immediately
following this, the bitmap-derived clipping path is removed.

Image masks differ from images in two ways. First, when an image is
drawn, all pixels in the rectangle of the image are painted. In an image
mask, only the pixels under holes in the mask are painted; all other pixels
are left unchanged. Second, the colors in which an image is painted are
encoded inside the image itself, while an image mask is painted using the
current fill color at the time the image mask is drawn. Because of this, an
image mask may appear in different colors each time it is drawn.

As described in Section 6.8.6, “XObject resources,” the structure of an
image mask differs from that of an image in several ways. First, an image
mask must have only one bit per color component. Second, an image mask
must not contain a color space specification, while an image must. Third,
the image mask dictionary must contain the ImageMask key with a value
of true. For both images and image masks, the array specified as the value
of the Decode key in the image can be used to choose whether bits
containing 1s or bits containing 0s are considered to be set.

Figure 12.3 shows examples of images and image masks. The examples also
illustrate how the decode array can be used to invert the image.

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

12.3 Image masks 209

Figure 12.3 Images and image masks

Image Inverted image

Image mask Inverted image mask

Example 12.3 shows the relevant sections from the PDF file used to produce
the figure. Because the only difference between the PDF files used to draw
each of the four examples is in the image object itself, all the drawing
operations are common. The 0.6 g operation appearing just before the
image or image mask is drawn has an effect only when the object being
drawn is an image mask, not an image. The example shows the operations
used to draw the image mask portion of the figure. To produce the image
portion of the figure, the line /ImageMask true was replaced with the line
/ColorSpace /DeviceGray. For the inverted image and inverted image
mask, the line /Decode [1 0] was added to the dictionary of the image or
image mask.

Example 12.3 Images and image masks

3 0 obj
<<
/Type /Page
/Parent 4 0 R
/MediaBox [53 470 198 616]
/Resources << /XObject << /Im0 60 0 R >>
/ProcSet [/PDF /ImageC] >>
/Contents 23 0 R
>>
endobj

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

210 Chapter 12: Clipping and Blends

23 0 obj
<< /Length 205 >>
stream
%Draw a circle and fill it
0.8 g
126 472 m
165 472 197 504 197 543 c
197 582 165 614 126 614 c
87 614 55 582 55 543 c
55 504 87 472 126 472 c
f
%Draw image or mask
q
100 0 0 100 76 493.2 cm
.6 g
/Im0 Do
Q
endstream
endobj
60 0 obj
<< /Type /XObject
/Subtype /Image
/Name /Im0
/Width 24
/Height 23
/BitsPerComponent 1
/Filter /ASCIIHexDecode
/Length 162
/ImageMask true
>>
stream
003b00 002700 002480 0e4940
114920 14b220 3cb650 75fe88
17ff8c 175f14 1c07e2 3803c4
703182 f8edfc b2bbc2 bb6f84
31bfc2 18ea3c 0e3e00 07fc00
03f800 1e1800 1ff800>
endstream
endobj

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

12.4 Blends 211

12.4 Blends

Several approaches may be used to produce blends. One alternative is to
draw path segments such as rectangles, lines, and arcs adjacent to each
other, each having a slightly different color. This method can result in large
files and is slow to draw. Using images is often a much better method for
producing blends.

Blends made using images usually occupy much less space in a PDF file.
Images also have the advantage that they can be filled with arbitrary
sequences of colors to provide arbitrary blends, and they can be easily
stretched, rotated, and skewed in order to provide a variety of blend effects
from a single image. In addition, the colors in an image can vary arbitrarily
from sample to sample, allowing the production of effects that are difficult
or impossible using path segment operators.

Using an image as a blend involves several steps:

1. Create the image containing the blend.

2. Draw the shape to be filled with the blend and make it the current
clipping path.

3. Scale and translate the image using the cm operator so that it
completely fills the shape.

4. Draw the image using the Do operator.

5. Remove the clipping path created in Step 2 so that any subsequent
drawing is not restricted to the shape of the object that was filled
with the blend.

To create a linear blend in which the color inside an object varies smoothly
from top to bottom, only a one-sample-wide image is needed, with as many
rows in the image as there are to be steps in the blend. Each sample in the
image is given the color of the corresponding band in the blend. For
example, to create a four-step grayscale blend that goes from medium gray
to black, create an image with a Width of 1, a Height of 4, and a
ColorSpace of DeviceGray. Set BitsPerComponent as needed.
Suppose you set it to 8. The image data contains the colors to be used in the
blend. In this example, you might set them to 00, 20, 40, and 60
hexadecimal.

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

212 Chapter 12: Clipping and Blends

Now that this image has been created, it can be rotated to provide other
blends. For example, to obtain a four-step horizontal blend instead of a
vertical blend, the image need only be rotated by 90 degrees by setting the
appropriate matrix (using the cm operator) before drawing the image.

Figure 12.4 illustrates the use of an image to produce a linear blend. The
example consists of a circle, stroked and used as a clipping path for a 32-
step vertical gray blend. A second blend is used inside the letter. This 27-
step blend runs from light pink at the top to deep red at the bottom. The
blend is tilted 30 degrees, so that the lines of constant color are
approximately parallel to the stem coming off the left side of the letter “L”.

Note The example blends in this chapter use a relatively small number of steps.
This is done only to minimize the size of the examples. Blends of 256 steps,
which generally provide smooth blends, can be used without a significant
performance degradation.

The relevant sections from the PDF file used to produce the figure are
shown in Example 12.4. The example is explained in the following
paragraphs.

Figure 12.4 Using an image to produce a linear blend

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

12.4 Blends 213

Example 12.4 Using images as blends

3 0 obj
<<
/Type /Page
/Parent 4 0 R
/MediaBox [0 0 612 792]
/Resources << /Font << /F39 7 0 R >>
/XObject << /Im0 10 0 R /Im1 11 0 R >>
/ProcSet [/PDF /Text /ImageC] >>
/Contents 6 0 R
>>
endobj
6 0 obj
<< /Length 383 >>
stream
%Draw circle, use it as a clipping path
q
126 472 m
165 472 197 504 197 543 c
197 582 165 614 126 614 c
87 614 55 582 55 543 c
55 504 87 472 126 472 c
W
s
%Draw image inside circle
-150 0 0 -150 200 620 cm
/Im0 Do
Q
%Draw character, stroke it and use it as a clipping path
q
BT
85 510 Td
/F39 144 Tf
0.25 w
5 Tr
(L) Tj
ET
%Draw image inside text
147 85 -50 86.7 45 420 cm
/Im1 Do
Q

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

214 Chapter 12: Clipping and Blends

endstream
endobj
10 0 obj
<< /Type /XObject
/Subtype /Image
/Name /Im0
/Width 1
/Height 32
/BitsPerComponent 8
/ColorSpace /DeviceGray
/Filter /ASCIIHexDecode
/Length 97 >>
stream
ff f8 ef e8 df d8 cf c8 bf b8 af a8 9f 98 8f 88
7f 78 6f 68 5f 58 4f 48 3f 38 2f 28 1f 18 0f 08>
endstream
endobj
11 0 obj
<< /Type /XObject
/Subtype /Image
/Name /Im1
/Width 1
/Height 27
/BitsPerComponent 8
/ColorSpace /DeviceRGB
/Filter /ASCIIHexDecode
/Length 190 >>
stream
ffd0d0 ffc8c8 ffc0c0 ffb8b8 ffb0b0 ffa8a8 ffa0a0 ff9898 ff9090 ff8888
ff8080 ff7878 ff7070 ff6868 ff6060 ff5858 ff5050 ff4848 ff4040
ff3838 ff3030 ff2828 ff2020 ff1818 ff1010 ff0808 ff0000>
endstream
endobj

Object number 3 is the Page object, and is included to show the Resources
dictionary, containing the mapping between image and font names used in
the page contents, and the objects which are the fonts and images. In
addition, the dictionary contains a list of the procsets needed to print this
page.

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

12.4 Blends 215

Object number 6 is the page contents. The graphics state is first saved using
the q operator, in order to be able to restore the original clipping path after
drawing the circle and filling it with a blend. Next, the circle is drawn using
four Bézier curve segments (the c operators), set to be the clipping path
using the W operator, and stroked using the s operator. Following this, the
cm operator is used to translate and scale the image so that it fills the circle,
and the gray blend (named Im0) is drawn using the Do operator. Next, the
original clipping path is restored using the Q operator, and this state saved
again, for restoration after using a clipping mode to fill the text.

The text is positioned using the Td operator, and the font (named F39,
which in the example is Poetica Initial Swash Capitals) and size (144
points) are set using the Tf operator. The font object and other related
objects are not included in the section shown from the example file. The text
rendering mode is set to stroke the text and use it as the clipping path (mode
5) using the Tr operator. The text is drawn using the Tj operator, and the text
object ended. The transformation matrix is again set to scale the image that
is to be used as the blend filling the letter. In addition to scaling the image,
the matrix used produces a 30-degree rotation to provide a diagonal blend.
The image used as the colored blend (named Im1) is drawn, and the initial
graphics state restored.

Because the drawing and filling of the text are the last operations in the
contents of this particular page, it is not necessary to save the graphics state
before entering the text object and to restore the graphics state after drawing
the blend. The saving and restoring is included in this example as a
reminder that the graphics state must be restored before any subsequent
drawing.

Images may be used to produce other blends, such as the square blend
shown in Figure 12.5. The blend shown in the figure is a 16-step grayscale
blend. Radial blends, in which the bands of constant color are circles, and
other arbitrarily complicated blends can also be produced using images.

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

216 Chapter 12: Clipping and Blends

Figure 12.5 Using an image to produce a square blend

The image used to produce the blend is shown in Example 12.5. It is a
31×31 sample grayscale image, with 8 bits per sample.

Example 12.5 Image used to produce a grayscale square blend

<< /Type /XObject /Subtype /Image /Name /Im0
/Width 31 /Height 31 /BitsPerComponent 8
/ColorSpace /DeviceGray /Filter /ASCIIHexDecode
/Length 1954 >>
stream
000
000000000
001
010101000
00102
020201000
0010203
030201000
001020304
030201000
0010203040504
030201000
00102030405060606060606060606060606060606060606060504
030201000
00102030405060707070707070707070707070707070707060504
030201000
00102030405060708080808080808080808080808080807060504
030201000
00102030405060708090909090909090909090909090807060504

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

12.4 Blends 217

030201000
00102030405060708090a0a0a0a0a0a0a0a0a0a0a090807060504
030201000
00102030405060708090a0b0b0b0b0b0b0b0b0b0a090807060504
030201000
00102030405060708090a0b0c0c0c0c0c0c0c0b0a090807060504
030201000
00102030405060708090a0b0c0d0d0d0d0d0c0b0a090807060504
030201000
00102030405060708090a0b0c0d0e0e0e0d0c0b0a090807060504
030201000
00102030405060708090a0b0c0d0e0f0e0d0c0b0a090807060504
030201000
00102030405060708090a0b0c0d0e0e0e0d0c0b0a090807060504
030201000
00102030405060708090a0b0c0d0d0d0d0d0c0b0a090807060504
030201000
00102030405060708090a0b0c0c0c0c0c0c0c0b0a090807060504
030201000
00102030405060708090a0b0b0b0b0b0b0b0b0b0a090807060504
030201000
00102030405060708090a0a0a0a0a0a0a0a0a0a0a090807060504
030201000
00102030405060708090909090909090909090909090807060504
030201000
00102030405060708080808080808080808080808080807060504
030201000
00102030405060707070707070707070707070707070707060504
030201000
00102030405060606060606060606060606060606060606060504
030201000
0010203040504
030201000
001020304
030201000
0010203
030201000
00102
020201000
001
010101000

PDF Reference Manual April 16, 1996 Chapter 12: Clipping and Blends

218 Chapter 12: Clipping and Blends

000
000000000>
endstream

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

219

APPENDIX A

Example PDF Files

A.1 Minimal PDF file

Although the PDF file shown in this example does not draw anything, it is
almost the minimum PDF file possible. It is not strictly the minimum
acceptable file because it contains an Outlines object, a Contents object, and
a Resources dictionary with a ProcSet resource. These objects were
included to make this file useful as a starting point for developing test files.
The objects present in this file are listed in Table A.1.

Note When using this file as a starting point for creating other files, remember to
update the ProcSet resource as needed (see Section 6.8.1, “ProcSet
resources.”) Also, remember that the cross-reference table entries may need
to have a trailing blank (see Section 5.4, “Cross-reference table.”)

Table A.1 Objects in empty example

Object number Object type

1 Catalog

2 Outlines

3 Pages

4 Page

5 Contents

6 ProcSet array

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

220 Appendix A: Example PDF Files

Example A.1 Minimal PDF file

%PDF-1.0
1 0 obj
<<
/Type /Catalog
/Pages 3 0 R
/Outlines 2 0 R
>>
endobj
2 0 obj
<<
/Type /Outlines
/Count 0
>>
endobj
3 0 obj
<<
/Type /Pages
/Count 1
/Kids [4 0 R]
>>
endobj
4 0 obj
<<
/Type /Page
/Parent 3 0 R
/Resources << /ProcSet 6 0 R >>
/MediaBox [0 0 612 792]
/Contents 5 0 R
>>
endobj
5 0 obj
<< /Length 35 >>
stream
%place page marking operators here
endstream
endobj
6 0 obj
[/PDF]
endobj
xref

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

A.2 Simple text string 221

0 7
0000000000 65535 f
0000000009 00000 n
0000000074 00000 n
0000000120 00000 n
0000000179 00000 n
0000000300 00000 n
0000000384 00000 n
trailer
<<
/Size 7
/Root 1 0 R
>>
startxref
408
%%EOF

A.2 Simple text string

This PDF file is the classic “Hello World.” It displays a single line of text
containing that string. The string is displayed in 24-point Helvetica.
Because Helvetica is one of the base 14 fonts, no font descriptor is needed.
This example illustrates the use of fonts and several text-related PDF
operators. The objects contained in the file are listed in Table A.2.

Table A.2 Objects in “Hello World” example

Object number Object type

1 Catalog

2 Outlines

3 Pages

4 Page

5 Contents

6 ProcSet array

7 Font (Type 1 font)

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

222 Appendix A: Example PDF Files

Example A.2 PDF file for simple text example

%PDF-1.0
1 0 obj
<<
/Type /Catalog
/Pages 3 0 R
/Outlines 2 0 R
>>
endobj
2 0 obj
<<
/Type /Outlines
/Count 0
>>
endobj
3 0 obj
<<
/Type /Pages
/Count 1
/Kids [4 0 R]
>>
endobj
4 0 obj
<<
/Type /Page
/Parent 3 0 R
/Resources << /Font << /F1 7 0 R >> /ProcSet 6 0 R >>
/MediaBox [0 0 612 792]
/Contents 5 0 R
>>
endobj
5 0 obj
<< /Length 44 >>
stream
BT
/F1 24 Tf
100 100 Td (Hello World) Tj
ET
endstream
endobj
6 0 obj

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

A.3 Simple graphics 223

[/PDF /Text]
endobj
7 0 obj
<<
/Type /Font
/Subtype /Type1
/Name /F1
/BaseFont /Helvetica
/Encoding /MacRomanEncoding
>>
endobj
xref
0 8
0000000000 65535 f
0000000009 00000 n
0000000074 00000 n
0000000120 00000 n
0000000179 00000 n
0000000322 00000 n
0000000415 00000 n
0000000445 00000 n
trailer
<<
/Size 8
/Root 1 0 R
>>
startxref
553
%%EOF

A.3 Simple graphics

This PDF file draws a thin black line segment, a thick black dashed line
segment, a filled and stroked rectangle, and a filled and stroked Bézier
curve. The file contains comments showing the various operations. The
objects present in this file are listed in Table A.3.

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

224 Appendix A: Example PDF Files

Table A.3 Objects in graphics example

Object number Object type

1 Catalog

2 Outlines

3 Pages

4 Page

5 Contents

6 ProcSets

Example A.3 PDF file for simple graphics example

%PDF-1.0
1 0 obj
<<
/Type /Catalog
/Pages 3 0 R
/Outlines 2 0 R
>>
endobj
2 0 obj
<<
/Type /Outlines
/Count 0
>>
endobj
3 0 obj
<<
/Type /Pages
/Count 1
/Kids [4 0 R]
>>
endobj
4 0 obj
<<
/Type /Page
/Parent 3 0 R
/Resources << /ProcSet 6 0 R >>
/MediaBox [0 0 612 792]

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

A.3 Simple graphics 225

/Contents 5 0 R
>>
endobj
5 0 obj
<< /Length 604 >>
stream
% Draw a black line segment, using the default line width
150 250 m
150 350 l
S
% Draw thicker, dashed line segment
150 250 m
4 w %set a linewidth of 4 points
[4 6] 0 d %Set a dash pattern with 4 units on, 6 units off
400 250 l
S
[] 0 d %reset dash pattern to a solid line
1 w %reset linewidth to 1 unit
%Draw a rectangle, 1 unit light blue border, filled with red
200 200 m
.5 .75 1 rg %light blue for fill color
1 0 0 RG %red for stroke color
200 300 50 75 re
B
% Draw a curve using a Bézier curve,
% filled with gray and with a colored border
.5 .1 .2 RG
0.7 g
300 300 m
300 400 400 400 400 300 c
b
endstream
endobj
6 0 obj
[/PDF]
endobj
xref
0 7
0000000000 65535 f
0000000009 00000 n
0000000074 00000 n
0000000120 00000 n

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

226 Appendix A: Example PDF Files

0000000179 00000 n
0000000300 00000 n
0000000954 00000 n
trailer
<<
/Size 7
/Root 1 0 R
>>
startxref
978
%%EOF

A.4 Pages tree

This example is a fragment of a PDF file, illustrating the structure of the
Pages tree for a large document. It contains the Pages objects for a 62-page
file. The structure of the Pages tree for this example is shown in Figure A.1.
In the figure, the numbers are object numbers corresponding to the objects
in the PDF document fragment contained in Example A.4.

Figure A.1 Pages tree for 62-page document example

Example A.4 Pages tree for a document containing 62 pages

337 0 obj
<<
/Kids [335 0 R 336 0 R]

337

335 336

4 43 77 108 139 170 201 232 263 294 325

3

16

21

26

31

37

42

48

53

58

63

70

76

82

87

92

97

102

107

113

118

123

128

133

138

144

149

154

159

164

169

175

180

185

190

195

200

206

211

216

221

226

231

237

242

247

252

257

262

268

273

278

283

288

293

299

304

309

314

319

324

330

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

A.4 Pages tree 227

/Count 62
/Type /Pages
>>
endobj

335 0 obj
<<
/Kids [4 0 R 43 0 R 77 0 R 108 0 R 139 0 R 170 0 R]
/Count 36
/Type /Pages
/Parent 337 0 R
>>
endobj

336 0 obj
<<
/Kids [201 0 R 232 0 R 263 0 R 294 0 R 325 0 R]
/Count 26
/Type /Pages
/Parent 337 0 R
>>
endobj

4 0 obj
<<
/Kids [3 0 R 16 0 R 21 0 R 26 0 R 31 0 R 37 0 R]
/Count 6
/Type /Pages
/Parent 335 0 R
>>
endobj

43 0 obj
<<
/Kids [42 0 R 48 0 R 53 0 R 58 0 R 63 0 R 70 0 R]
/Count 6
/Type /Pages
/Parent 335 0 R
>>
endobj

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

228 Appendix A: Example PDF Files

77 0 obj
<<
/Kids [76 0 R 82 0 R 87 0 R 92 0 R 97 0 R 102 0 R]
/Count 6
/Type /Pages
/Parent 335 0 R
>>
endobj

108 0 obj
<<
/Kids [107 0 R 113 0 R 118 0 R 123 0 R 128 0 R 133 0 R]
/Count 6
/Type /Pages
/Parent 335 0 R
>>
endobj

139 0 obj
<<
/Kids [138 0 R 144 0 R 149 0 R 154 0 R 159 0 R 164 0 R]
/Count 6
/Type /Pages
/Parent 335 0 R
>>
endobj

170 0 obj
<<
/Kids [169 0 R 175 0 R 180 0 R 185 0 R 190 0 R 195 0 R]
/Count 6
/Type /Pages
/Parent 335 0 R
>>
endobj

201 0 obj
<<
/Kids [200 0 R 206 0 R 211 0 R 216 0 R 221 0 R 226 0 R]
/Count 6
/Type /Pages

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

A.4 Pages tree 229

/Parent 336 0 R
>>
endobj

232 0 obj
<<
/Kids [231 0 R 237 0 R 242 0 R 247 0 R 252 0 R 257 0 R]
/Count 6
/Type /Pages
/Parent 336 0 R
>>
endobj

263 0 obj
<<
/Kids [262 0 R 268 0 R 273 0 R 278 0 R 283 0 R 288 0 R]
/Count 6
/Type /Pages
/Parent 336 0 R
>>
endobj

294 0 obj
<<
/Kids [293 0 R 299 0 R 304 0 R 309 0 R 314 0 R 319 0 R]
/Count 6
/Type /Pages
/Parent 336 0 R
>>
endobj

325 0 obj
<<
/Kids [324 0 R 330 0 R]
/Count 2
/Type /Pages
/Parent 336 0 R
>>
endobj

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

230 Appendix A: Example PDF Files

A.5 Outline

This section from a PDF file illustrates the structure of an outline tree with
six entries. Example A.5 shows the outline with all entries open, as
illustrated in Figure A.2.

Figure A.2 Example of outline with six items, all open

Example A.5 Six entry outline, all items open

21 0 obj
<<
/Count 6
/Type /Outlines
/First 22 0 R
/Last 29 0 R
>>
endobj

22 0 obj
<<
/Parent 21 0 R
/Dest [3 0 R /Top 0 792 0]
/Title (Document)
/Next 29 0 R
/First 25 0 R
/Last 28 0 R

Document

Section 1

Section 2

Subsection 1

Section 3

Summary

Onscreen appearance
Object

number Count

22

25

26

27

28

29

4

0

1

0

0

0

621

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

A.5 Outline 231

/Count 4
>>
endobj

25 0 obj
<<
/Dest [3 0 R /FitR -38 255 650 792]
/Parent 22 0 R
/Title (Section 1)
/Next 26 0 R
>>
endobj

26 0 obj
<<
/Dest [3 0 R /FitR -38 255 650 792]
/Prev 25 0 R
/Next 28 0 R
/Parent 22 0 R
/Title (Section 2)
/First 27 0 R
/Last 27 0 R
/Count 1
>>
endobj

27 0 obj
<<
/Dest [3 0 R /FitR 65498 255 650 792]
/Parent 26 0 R
/Title (Subsection 1)
>>
endobj

28 0 obj
<<
/Dest [3 0 R /FitR 3 255 622 792]
/Prev 26 0 R
/Parent 22 0 R

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

232 Appendix A: Example PDF Files

/Title (Section 3)
>>
endobj

29 0 obj
<<
/Prev 22 0 R
/Parent 21 0 R
/Dest [3 0 R /FitR 3 255 622 792]
/Title (Summary)
>>
endobj

Example A.6 is the same as Example A.5, except that one of the outline
items has been closed. The outline appears as shown in Figure A.3.

Figure A.3 Example of outline with six items, five of which are open

Example A.6 Six entry outline, five entries open

21 0 obj
<<
/Count 5
/Type /Outlines
/First 22 0 R
/Last 29 0 R
>>
endobj

Onscreen appearance
Object

number Count

Document

Section 1

Section 2

Section 3

Summary

22

25

26

28

29

3

0

–1

0

0

521

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

A.5 Outline 233

22 0 obj
<<
/Parent 21 0 R
/Dest [3 0 R /Top 0 792 0]
/Title (Document)
/Next 29 0 R
/First 25 0 R
/Last 28 0 R
/Count 3
>>
endobj

25 0 obj
<<
/Dest [3 0 R /FitR -38 255 650 792]
/Parent 22 0 R
/Title (Section 1)
/Next 26 0 R
>>
endobj

26 0 obj
<<
/Dest [3 0 R /FitR -38 255 650 792]
/Prev 25 0 R
/Next 28 0 R
/Parent 22 0 R
/Title (Section 2)
/First 27 0 R
/Last 27 0 R
/Count -1
>>
endobj

27 0 obj
<<
/Dest [3 0 R /FitR 65498 255 650 792]
/Parent 26 0 R
/Title (Subsection 1)
>>
endobj

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

234 Appendix A: Example PDF Files

28 0 obj
<<
/Dest [3 0 R /FitR 3 255 622 792]
/Prev 26 0 R
/Parent 22 0 R
/Title (Section 3)
>>
endobj

29 0 obj
<<
/Prev 22 0 R
/Parent 21 0 R
/Dest [3 0 R /FitR 3 255 622 792]
/Title (Summary)
>>
endobj

A.6 Updated file

This example shows the structure of a PDF file as it is updated several
times; multiple body sections, cross-reference sections, and trailers. In
addition, it illustrates the fact that once an object ID has been assigned to an
object, it keeps the ID until it is deleted, even if the object is altered. Finally,
it illustrates the re-use of cross-reference entries for objects that have been
deleted, along with the incrementing of the generation number after an
object has been deleted.

The original file is that used in Section A.1, “Minimal PDF file.” This file is
not shown again here. First, four text annotations are added and the file
saved. Next, the text of one of the annotations is altered, and the file saved.
Following this, two of the text annotations are deleted, and the file saved
again. Finally, three text annotations are added, and the file saved again.

The segments added to the file at each stage are shown separately.
Throughout this example, objects are referred to by their object IDs, made
up of the object number and generation number, rather than simply by the
object number, as was done in earlier examples. This is necessary because
objects are re-used in this example, so that the object number is not a unique
identifier.

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

A.6 Updated file 235

Note The tables in this section show only the objects that are modified at some
point during the updating process. Objects from the example file in Section
A.1, “Minimal PDF file” that are never altered during the update are not
shown.

A.6.1 Add four text annotations

Four text annotations were added to the initial file and the file saved. Table
A.4 lists the objects in this update.

Table A.4 Object use after adding four text annotations

Object ID Object type

4 0 Page

7 0 Annots array

8 0 Text annotation

9 0 Text annotation

10 0 Text annotation

11 0 Text annotation

Example A.7 shows the lines added to the file by this update. The Page
object is updated because an Annots key has been added. Note that the
file’s trailer now contains a Prev key, which points to the original cross-
reference section in the file, while the startxref value at the end of the file
points to the cross-reference section added by the update.

Example A.7 Update section of PDF file when four text annotations are

added

4 0 obj
<<
/Type /Page
/Parent 3 0 R
/Resources << /ProcSet 6 0 R >>
/MediaBox [0 0 612 792]
/Contents 5 0 R
/Annots 7 0 R
>>
endobj
7 0 obj

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

236 Appendix A: Example PDF Files

[8 0 R 9 0 R 10 0 R 11 0 R]
endobj
8 0 obj
<<
/Type /Annot
/Subtype /Text
/Open true
/Rect [44 616 162 735]
/Contents (Text #1)
>>
endobj
9 0 obj
<<
/Type /Annot
/Subtype /Text
/Open false
/Rect [224 668 457 735]
/Contents (Text #2)
>>
endobj
10 0 obj
<<
/Type /Annot
/Subtype /Text
/Open true
/Rect [239 393 328 622]
/Contents (Text #3)
>>
endobj
11 0 obj
<<
/Type /Annot
/Subtype /Text
/Open false
/Rect [34 398 225 575]
/Contents (Text #4)
>>
endobj
xref
0 1
0000000000 65535 f
4 1

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

A.6 Updated file 237

0000000612 00000 n
7 5
0000000747 00000 n
0000000792 00000 n
0000000897 00000 n
0000001004 00000 n
0000001111 00000 n
trailer
<<
/Size 12
/Root 1 0 R
/Prev 408
>>
startxref
1218
%%EOF

A.6.2 Modify text of one annotation

The lines shown in Example A.8 were added to the file when it was saved
after modifying one text annotation. Note that the file now contains two
copies of the object with ID 10 0 (the text annotation that was modified),
and that the cross-reference section added points to the more recent version
of the object. The cross-reference section added contains one subsection.
The subsection contains an entry only for the object that was modified. In
addition, the Prev key in the file’s trailer has been updated to point to the
cross-reference section added by the previous update, while the startxref
value at the end of the file points to the newly added cross-reference section.

Example A.8 Update section of PDF file when one text annotation is

modified

10 0 obj
<<
/Type /Annot
/Subtype /Text
/Open true
/Rect [239 393 328 622]
/Contents (Modified Text #3)
>>
endobj
xref
10 1

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

238 Appendix A: Example PDF Files

0000001444 00000 n
trailer
<<
/Size 12
/Root 1 0 R
/Prev 1218
>>
startxref
1560
%%EOF

A.6.3 Delete two annotations

Table A.5 lists the objects updated when two text annotations were deleted
and the file saved.

Table A.5 Object use after deleting two text annotations

Object ID Object type

7 0 Annots array

8 0 Free

9 0 Free

The Annots array is the only object that is written in this update. It is
updated because it now contains two fewer annotations.

Example A.9 shows the lines added when the file was saved. Note that
objects with IDs 8 0 and 9 0 have been deleted, as can be seen from the fact
that their entries in the cross-reference section end with an f. The cross-
reference section added in this step contains four entries, corresponding to
object number 0, the Annots array, and the two deleted text annotations. The
cross-reference entry for object number 0 is updated because it is the head
of the linked list of free objects, and must now point to the newly freed entry
for object number 8. The entry for object number 8 points to the entry for
object number 9 (the next free entry), while the entry for object number 9 is
the last free entry in the cross-reference table, indicated by the fact that it
points to object number 0. The entries for the two deleted text annotations
are marked as free, and as having generation numbers of 1, which will be
used for any objects that re-use these cross-reference entries. Keep in mind

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

A.6 Updated file 239

that, although the two objects have been deleted, they are still present in the
file. It is the cross-reference table that records the fact that they have been
deleted.

The Prev key in the trailer dictionary has again been updated, so that it
points to the cross-reference section added in the previous step, and the
startxref value points to the newly added cross-reference section.

Example A.9 Update section of PDF file when two text annotations are

deleted

7 0 obj
[10 0 R 11 0 R]
endobj
xref
0 1
0000000008 65535 f
7 3
0000001658 00000 n
0000000009 00001 f
0000000000 00001 f
trailer
<<
/Size 12
/Root 1 0 R
/Prev 1560
>>
startxref
1691
%%EOF

A.6.4 Add three annotations

Finally, three text annotations were added to the file. Table A.6 lists the
objects involved in this update.

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

240 Appendix A: Example PDF Files

Table A.6 Object use after adding three text annotations

Object ID Object type

7 0 Annots array

8 1 Text annotation

9 1 Text annotation

12 0 Text annotation

Object numbers 8 and 9, which were the object numbers used for the two
annotations deleted in the previous step, have been re-used. The new objects
have been given a generation number of 1, however. In addition, the third
text annotation added was assigned the previously unused object ID of 12 0.

Example A.10 shows the lines added to the file by this update. The cross-
reference section added in this step contains five entries, corresponding
object number 0, the Annots array, and the three annotations added. The
entry for object number zero is updated because the previously free entries
for object numbers 8 and 9 have been re-used. The entry for object number
zero now shows that there are no free entries in the cross-reference table.
The Annots array is updated to reflect the addition of the three new text
annotations.

As in previous updates, the trailer’s Prev key and startxref value have been
updated.

The annotation with object ID 12 0 illustrates the splitting of a long text
string across multiple lines, as well as the technique for including non-
standard characters in a string. In this case, the character is an ellipsis (…),
which is character code 203 (octal) in the PDFDocEncoding used for text
annotations.

Example A.10 Update section of PDF file after three text annotations are

added

7 0 obj
[10 0 R 11 0 R 8 1 R 9 1 R 12 0 R]
endobj
8 1 obj
<<
/Type /Annot
/Subtype /Text
/Open true

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

A.6 Updated file 241

/Rect [58 657 172 742]
/Contents (New Text #1)
>>
endobj
9 1 obj
<<
/Type /Annot
/Subtype /Text
/Open false
/Rect [389 459 570 537]
/Contents (New Text Annotation #2)
>>
endobj
12 0 obj
<<
/Type /Annot
/Subtype /Text
/Open true
/Rect [44 253 473 337]
/Contents (A longer annotation which we'll call, for lack of a better
name\203New T\
ext #3)
>>
endobj
xref
0 1
0000000000 65535 f
7 3
0000001853 00000 n
0000001905 00001 n
0000002014 00001 n
12 1
0000002136 00000 n
trailer
<<
/Size 13
/Root 1 0 R
/Prev 1691
>>
startxref
2315
%%EOF

PDF Reference Manual April 16, 1996 Appendix A: Example PDF Files

242 Appendix A: Example PDF Files

PDF Reference Manual April 16, 1996 Appendix B: Summary of Page Marking Opera-

243

APPENDIX B

Summary of Page Marking
Operators

Following is a list of all page marking operators used in PDF files, arranged
alphabetically. For each operator, a brief description is given, along with a
reference to the page in this document where the operator is discussed in
detail. Words shown in boldface in the summary column are PostScript
language operators.

Table B.1 PDF page marking operators

Operator Summary Page

b closepath, fill and stroke path 155

B fill and stroke path 155

b* closepath, eofill, and stroke path 155

B* eofill and stroke path 155

BI begin image 166

BT begin text object 161

c curveto 152

cm concat. Concatenates the matrix to the current
transformation matrix

147

d setdash 147

d0 setcharwidth for Type 3 font 167

d1 setcachedevice for Type 3 font 167

Do execute the named XObject 164

EI end image 166

PDF Reference Manual April 16, 1996 Appendix B: Summary of Page Marking Opera-

244 Appendix B: Summary of Page Marking Operators

ET end text object 161

f fill path 155

F fill path 155

f* eofill path 155

g setgray (fill) 148

G setgray (stroke) 148

h closepath 153

i setflat 147

ID begin image data 166

j setlinejoin 147

J setlinecap 147

k setcmykcolor (fill) 148

K setcmykcolor (stroke) 149

l lineto 152

m moveto 152

M setmiterlimit 148

n end path without fill or stroke 155

q save graphics state 147

Q restore graphics state 147

re rectangle 153

rg setrgbcolor (fill) 149

RG setrgbcolor (stroke) 149

s closepath and stroke path 155

S stroke path 155

Table B.1 PDF page marking operators

Operator Summary Page

PDF Reference Manual April 16, 1996 Appendix B: Summary of Page Marking Opera-

 245

Tc set character spacing 161

Td move text current point 162

TD move text current point and set leading 163

Tf set font name and size 162

Tj show text 163

TJ show text, allowing individual character posi-
tioning

164

TL set leading 162

Tm set text matrix 163

Tr set text rendering mode 162

Ts set super/subscripting text rise 162

Tw set word spacing 162

Tz set horizontal scaling 162

T* move to start of next line 163

v curveto 152

w setlinewidth 148

W clip 156

W* eoclip 156

y curveto 153

' move to next line and show text 163

" move to next line and show text 163

Table B.1 PDF page marking operators

Operator Summary Page

PDF Reference Manual April 16, 1996 Appendix B: Summary of Page Marking Opera-

246 Appendix B: Summary of Page Marking Operators

PDF Reference Manual February 23, 1996 Predefined Font Encodings

247

APPENDIX

C

Predefined Font
Encodings

PDF provides several predefined font encodings:

•

MacRomanEncoding

,

MacExpertEncoding

, and

WinAnsiEncoding

may be used in Font and Encoding objects.

•

PDFDocEncoding

 is the encoding used in outline entries, text anno-
tations, and strings in the Info dictionary.

•

StandardEncoding

 is the built-in encoding for many fonts.

This appendix contains three tables describing these encodings. The
first table shows all encodings except

MacExpertEncoding

 and is
arranged alphabetically by character name. The second table is similar,
except that it is arranged numerically by character code. The third table
shows the encoding for

MacExpertEncoding

, which is shown in a
separate table because it has a substantially different character set than
the other encodings.

PDF Reference Manual February 23, 1996 Predefined Font Encodings

248 Appendix C: Predefined Font Encodings

C.1 Predefined encodings sorted by character name

Char Name
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal Decimal Octal Decimal Octal Decimal Octal

A

A 65 101 65 101 65 101 65 101

Æ

AE 225 341 174 256 198 306 198 306

Á

Aacute — — 231 347 193 301 193 301

Â

Acircumflex — — 229 345 194 302 194 302

Ä

Adieresis — — 128 200 196 304 196 304

À

Agrave — — 203 313 192 300 192 300

Å

Aring — — 129 201 197 305 197 305

Ã

Atilde — — 204 314 195 303 195 303

B

B 66 102 66 102 66 102 66 102

C

C 67 103 67 103 67 103 67 103

Ç

Ccedilla — — 130 202 199 307 199 307

D

D 68 104 68 104 68 104 68 104

E

E 69 105 69 105 69 105 69 105

É

Eacute — — 131 203 201 311 201 311

Ê

Ecircumflex — — 230 346 202 312 202 312

Ë

Edieresis — — 232 350 203 313 203 313

È

Egrave — — 233 351 200 310 200 310

Ð

Eth — — — — 208 320 208 320

F

F 70 106 70 106 70 106 70 106

G

G 71 107 71 107 71 107 71 107

H

H 72 110 72 110 72 110 72 110

I

I 73 111 73 111 73 111 73 111

Í

Iacute — — 234 352 205 315 205 315

Î

Icircumflex — — 235 353 206 316 206 316

Ï

Idieresis — — 236 354 207 317 207 317

Ì

Igrave — — 237 355 204 314 204 314

J

J 74 112 74 112 74 112 74 112

K

K 75 113 75 113 75 113 75 113

L

L 76 114 76 114 76 114 76 114

Ł

Lslash 232 350 — — — — 149 225

M

M 77 115 77 115 77 115 77 115

N

N 78 116 78 116 78 116 78 116

Ñ

Ntilde — — 132 204 209 321 209 321

O

O 79 117 79 117 79 117 79 117

Œ

OE 234 352 206 316 140 214 150 226

Ó

Oacute — — 238 356 211 323 211 323

Ô

Ocircumflex — — 239 357 212 324 212 324

PDF Reference Manual February 23, 1996 Predefined Font Encodings

C.1 Predefined encodings sorted by character name 249

Ö

Odieresis — — 133 205 214 326 214 326

Ò

Ograve — — 241 361 210 322 210 322

Ø

Oslash 233 351 175 257 216 330 216 330

Õ

Otilde — — 205 315 213 325 213 325

P

P 80 120 80 120 80 120 80 120

Q

Q 81 121 81 121 81 121 81 121

R

R 82 122 82 122 82 122 82 122

S

S 83 123 83 123 83 123 83 123

Š

Scaron — — — — 138 212 151 227

T

T 84 124 84 124 84 124 84 124

Þ

Thorn — — — — 222 336 222 336

U

U 85 125 85 125 85 125 85 125

Ú

Uacute — — 242 362 218 332 218 332

Û

Ucircumflex — — 243 363 219 333 219 333

Ü

Udieresis — — 134 206 220 334 220 334

Ù

Ugrave — — 244 364 217 331 217 331

V

V 86 126 86 126 86 126 86 126

W

W 87 127 87 127 87 127 87 127

X

X 88 130 88 130 88 130 88 130

Y

Y 89 131 89 131 89 131 89 131

Ý

Yacute — — — — 221 335 221 335

Ÿ

Ydieresis — — 217 331 159 237 152 230

Z

Z 90 132 90 132 90 132 90 132

Ž

Zcaron — — — — — — 153 231

a

a 97 141 97 141 97 141 97 141

á

aacute — — 135 207 225 341 225 341

â

acircumflex — — 137 211 226 342 226 342

´

acute 194 302 171 253 180 264 180 264

ä

adieresis — — 138 212 228 344 228 344

æ

ae 241 361 190 276 230 346 230 346

à

agrave — — 136 210 224 340 224 340

&

ampersand 38 46 38 46 38 46 38 46

å

aring — — 140 214 229 345 229 345

^

asciicircum 94 136 94 136 94 136 94 136

~

asciitilde 126 176 126 176 126 176 126 176

*

asterisk 42 52 42 52 42 52 42 52

@

at 64 100 64 100 64 100 64 100

ã

atilde — — 139 213 227 343 227 343

b

b 98 142 98 142 98 142 98 142

Char Name
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal Decimal Octal Decimal Octal Decimal Octal

PDF Reference Manual February 23, 1996 Predefined Font Encodings

250 Appendix C: Predefined Font Encodings

\

backslash 92 134 92 134 92 134 92 134

|

bar 124 174 124 174 124 174 124 174

{

braceleft 123 173 123 173 123 173 123 173

}

braceright 125 175 125 175 125 175 125 175

[

bracketleft 91 133 91 133 91 133 91 133

]

bracketright 93 135 93 135 93 135 93 135

˘

breve 198 306 249 371 — — 24 30

¦

brokenbar — — — — 166 246 166 246

•

bullet 183 267 165 245 149 225 128 200

c

c 99 143 99 143 99 143 99 143

ˇ

caron 207 317 255 377 — — 25 31

ç

ccedilla — — 141 215 231 347 231 347

¸

cedilla 203 313 252 374 184 270 184 270

¢

cent 162 242 162 242 162 242 162 242

ˆ

circumflex 195 303 246 366 136 210 26 32

:

colon 58 72 58 72 58 72 58 72

,

comma 44 54 44 54 44 54 44 54



copyright — — 169 251 169 251 169 251

¤

currency 168 250 219 333 164 244 164 244

d

d 100 144 100 144 100 144 100 144

†

dagger 178 262 160 240 134 206 129 201

‡

daggerdbl 179 263 224 340 135 207 130 202

°

degree — — 161 241 176 260 176 260

¨

dieresis 200 310 172 254 168 250 168 250

÷

divide — — 214 326 247 367 247 367

$

dollar 36 44 36 44 36 44 36 44

˙

dotaccent 199 307 250 372 — — 27 33

ı

dotlessi 245 365 245 365 — — 154 232

e

e 101 145 101 145 101 145 101 145

é

eacute — — 142 216 233 351 233 351

ê

ecircumflex — — 144 220 234 352 234 352

ë

edieresis — — 145 221 235 353 235 353

è

egrave — — 143 217 232 350 232 350

8

eight 56 70 56 70 56 70 56 70

…

ellipsis 188 274 201 311 133 205 131 203

—

emdash 208 320 209 321 151 227 132 204

–

endash 177 261 208 320 150 226 133 205

=

equal 61 75 61 75 61 75 61 75

ð

eth — — — — 240 360 240 360

Char Name
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal Decimal Octal Decimal Octal Decimal Octal

PDF Reference Manual February 23, 1996 Predefined Font Encodings

C.1 Predefined encodings sorted by character name 251

!

exclam 33 41 33 41 33 41 33 41

¡

exclamdown 161 241 193 301 161 241 161 241

f

f 102 146 102 146 102 146 102 146

fi

fi 174 256 222 336 — — 147 223

5

five 53 65 53 65 53 65 53 65

fl

fl 175 257 223 337 — — 148 224

ƒ

florin 166 246 196 304 131 203 134 206

4

four 52 64 52 64 52 64 52 64

⁄

fraction 164 244 218 332 — — 135 207

g

g 103 147 103 147 103 147 103 147

ß

germandbls 251 373 167 247 223 337 223 337

`

grave 193 301 96 140 96 140 96 140

>

greater 62 76 62 76 62 76 62 76

«

guillemotleft 171 253 199 307 171 253 171 253

»

guillemotright 187 273 200 310 187 273 187 273

‹

guilsinglleft 172 254 220 334 139 213 136 210

›

guilsinglright 173 255 221 335 155 233 137 211

h

h 104 150 104 150 104 150 104 150

˝

hungarumlaut 205 315 253 375 — — 28 34

-

hyphen 45 55 45 55 45 55 45 55

i

i 105 151 105 151 105 151 105 151

í

iacute — — 146 222 237 355 237 355

î

icircumflex — — 148 224 238 356 238 356

ï

idieresis — — 149 225 239 357 239 357

ì

igrave — — 147 223 236 354 236 354

j

j 106 152 106 152 106 152 106 152

k

k 107 153 107 153 107 153 107 153

l

l 108 154 108 154 108 154 108 154

<

less 60 74 60 74 60 74 60 74

¬

logicalnot — — 194 302 172 254 172 254

ł

lslash 248 370 — — — — 155 233

m

m 109 155 109 155 109 155 109 155

¯

macron 197 305 248 370 175 257 175 257

−

minus — — — — — — 138 212

µ

mu — — 181 265 181 265 181 265

×

multiply — — — — 215 327 215 327

n

n 110 156 110 156 110 156 110 156

9

nine 57 71 57 71 57 71 57 71

ñ

ntilde — — 150 226 241 361 241 361

Char Name
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal Decimal Octal Decimal Octal Decimal Octal

PDF Reference Manual February 23, 1996 Predefined Font Encodings

252 Appendix C: Predefined Font Encodings

#

numbersign 35 43 35 43 35 43 35 43

o

o 111 157 111 157 111 157 111 157

ó

oacute — — 151 227 243 363 243 363

ô

ocircumflex — — 153 231 244 364 244 364

ö

odieresis — — 154 232 246 366 246 366

œ

oe 250 372 207 317 156 234 156 234

˛

ogonek 206 316 254 376 — — 29 35

ò

ograve — — 152 230 242 362 242 362

1

one 49 61 49 61 49 61 49 61

½

onehalf — — — — 189 275 189 275

¼

onequarter — — — — 188 274 188 274

¹

onesuperior — — — — 185 271 185 271

ª

ordfeminine 227 343 187 273 170 252 170 252

º

ordmasculine 235 353 188 274 186 272 186 272

ø

oslash 249 371 191 277 248 370 248 370

õ

otilde — — 155 233 245 365 245 365

p

p 112 160 112 160 112 160 112 160

¶

paragraph 182 266 166 246 182 266 182 266

(

parenleft 40 50 40 50 40 50 40 50

)

parenright 41 51 41 51 41 51 41 51

%

percent 37 45 37 45 37 45 37 45

.

period 46 56 46 56 46 56 46 56

·

periodcentered 180 264 225 341 183 267 183 267

‰

perthousand 189 275 228 344 137 211 139 213

+

plus 43 53 43 53 43 53 43 53

±

plusminus — — 177 261 177 261 177 261

q

q 113 161 113 161 113 161 113 161

?

question 63 77 63 77 63 77 63 77

¿

questiondown 191 277 192 300 191 277 191 277

"

quotedbl 34 42 34 42 34 42 34 42

„

quotedblbase 185 271 227 343 132 204 140 214

“

quotedblleft 170 252 210 322 147 223 141 215

”

quotedblright 186 272 211 323 148 224 142 216

‘

quoteleft 96 140 212 324 145 221 143 217

’

quoteright 39 47 213 325 146 222 144 220

‚

quotesinglbase 184 270 226 342 130 202 145 221

'

quotesingle 169 251 39 47 39 47 39 47

r

r 114 162 114 162 114 162 114 162



registered — — 168 250 174 256 174 256

Char Name
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal Decimal Octal Decimal Octal Decimal Octal

PDF Reference Manual February 23, 1996 Predefined Font Encodings

C.1 Predefined encodings sorted by character name 253

Note In the

WinAnsiEncoding

, the hyphen character can also be accessed using a
character code of 173, the space using 160, and bullets are used for the other-
wise unused character codes 127, 128, 129, 141, 142, 143, 144, 157, and
158.

˚

ring 202 312 251 373 176 260 30 36

s

s 115 163 115 163 115 163 115 163

š

scaron — — — — 154 232 157 235

§

section 167 247 164 244 167 247 167 247

;

semicolon 59 73 59 73 59 73 59 73

7

seven 55 67 55 67 55 67 55 67

6

six 54 66 54 66 54 66 54 66

/

slash 47 57 47 57 47 57 47 57

space 32 40 32, 202 40,312 32 40 32 40

£

sterling 163 243 163 243 163 243 163 243

t

t 116 164 116 164 116 164 116 164

þ

thorn — — — — 254 376 254 376

3

three 51 63 51 63 51 63 51 63

¾

threequarters — — — — 190 276 190 276

³

threesuperior — — — — 179 263 179 263

˜

tilde 196 304 247 367 152 230 31 37



trademark — — 170 252 153 231 146 222

2

two 50 62 50 62 50 62 50 62

²

twosuperior — — — — 178 262 178 262

u

u 117 165 117 165 117 165 117 165

ú

uacute — — 156 234 250 372 250 372

û

ucircumflex — — 158 236 251 373 251 373

ü

udieresis — — 159 237 252 374 252 374

ù

ugrave — — 157 235 249 371 249 371

_

underscore 95 137 95 137 95 137 95 137

v

v 118 166 118 166 118 166 118 166

w

w 119 167 119 167 119 167 119 167

x

x 120 170 120 170 120 170 120 170

y

y 121 171 121 171 121 171 121 171

ý

yacute — — — — 253 375 253 375

ÿ

ydieresis — — 216 330 255 377 255 377

¥

yen 165 245 180 264 165 245 165 245

z

z 122 172 122 172 122 172 122 172

ž

zcaron — — — — — — 158 236

0

zero 48 60 48 60 48 60 48 60

Char Name
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal Decimal Octal Decimal Octal Decimal Octal

PDF Reference Manual February 23, 1996 Predefined Font Encodings

254 Appendix C: Predefined Font Encodings

C.2 Predefined encodings sorted by character code

Note Character codes 0 through 23 are not used in any of the predefined encodings.

Code
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal

24 30 — — — breve

25 31 — — — caron

26 32 — — — circumflex

27 33 — — — dotaccent

28 34 — — — hungarumlaut

29 35 — — — ogonek

30 36 — — — ring

31 37 — — — tilde

32 40 space space space space

33 41 exclam exclam exclam exclam

34 42 quotedbl quotedbl quotedbl quotedbl

35 43 numbersign numbersign numbersign numbersign

36 44 dollar dollar dollar dollar

37 45 percent percent percent percent

38 46 ampersand ampersand ampersand ampersand

39 47 quoteright quotesingle quotesingle quotesingle

40 50 parenleft parenleft parenleft parenleft

41 51 parenright parenright parenright parenright

42 52 asterisk asterisk asterisk asterisk

43 53 plus plus plus plus

44 54 comma comma comma comma

45 55 hyphen hyphen hyphen hyphen

46 56 period period period period

47 57 slash slash slash slash

48 60 zero zero zero zero

49 61 one one one one

50 62 two two two two

51 63 three three three three

52 64 four four four four

53 65 five five five five

54 66 six six six six

55 67 seven seven seven seven

56 70 eight eight eight eight

57 71 nine nine nine nine

58 72 colon colon colon colon

59 73 semicolon semicolon semicolon semicolon

60 74 less less less less

61 75 equal equal equal equal

PDF Reference Manual February 23, 1996 Predefined Font Encodings

C.2 Predefined encodings sorted by character code 255

62 76 greater greater greater greater

63 77 question question question question

64 100 at at at at

65 101 A A A A

66 102 B B B B

67 103 C C C C

68 104 D D D D

69 105 E E E E

70 106 F F F F

71 107 G G G G

72 110 H H H H

73 111 I I I I

74 112 J J J J

75 113 K K K K

76 114 L L L L

77 115 M M M M

78 116 N N N N

79 117 O O O O

80 120 P P P P

81 121 Q Q Q Q

82 122 R R R R

83 123 S S S S

84 124 T T T T

85 125 U U U U

86 126 V V V V

87 127 W W W W

88 130 X X X X

89 131 Y Y Y Y

90 132 Z Z Z Z

91 133 bracketleft bracketleft bracketleft bracketleft

92 134 backslash backslash backslash backslash

93 135 bracketright bracketright bracketright bracketright

94 136 asciicircum asciicircum asciicircum asciicircum

95 137 underscore underscore underscore underscore

96 140 quoteleft grave grave grave

97 141 a a a a

98 142 b b b b

99 143 c c c c

100 144 d d d d

101 145 e e e e

102 146 f f f f

103 147 g g g g

Code
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal

PDF Reference Manual February 23, 1996 Predefined Font Encodings

256 Appendix C: Predefined Font Encodings

104 150 h h h h

105 151 i i i i

106 152 j j j j

107 153 k k k k

108 154 l l l l

109 155 m m m m

110 156 n n n n

111 157 o o o o

112 160 p p p p

113 161 q q q q

114 162 r r r r

115 163 s s s s

116 164 t t t t

117 165 u u u u

118 166 v v v v

119 167 w w w w

120 170 x x x x

121 171 y y y y

122 172 z z z z

123 173 braceleft braceleft braceleft braceleft

124 174 bar bar bar bar

125 175 braceright braceright braceright braceright

126 176 asciitilde asciitilde asciitilde asciitilde

127 177 — — bullet —

128 200 — Adieresis bullet bullet

129 201 — Aring bullet dagger

130 202 — Ccedilla quotesinglbase daggerdbl

131 203 — Eacute florin ellipsis

132 204 — Ntilde quotedblbase emdash

133 205 — Odieresis ellipsis endash

134 206 — Udieresis dagger florin

135 207 — aacute daggerdbl fraction

136 210 — agrave circumflex guilsinglleft

137 211 — acircumflex perthousand guilsinglright

138 212 — adieresis Scaron minus

139 213 — atilde guilsinglleft perthousand

140 214 — aring OE quotedblbase

141 215 — ccedilla bullet quotedblleft

142 216 — eacute bullet quotedblright

143 217 — egrave bullet quoteleft

144 220 — ecircumflex bullet quoteright

145 221 — edieresis quoteleft quotesinglbase

Code
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal

PDF Reference Manual February 23, 1996 Predefined Font Encodings

C.2 Predefined encodings sorted by character code 257

146 222 — iacute quoteright trademark

147 223 — igrave quotedblleft fi

148 224 — icircumflex quotedblright fl

149 225 — idieresis bullet Lslash

150 226 — ntilde endash OE

151 227 — oacute emdash Scaron

152 230 — ograve tilde Ydieresis

153 231 — ocircumflex trademark Zcaron

154 232 — odieresis scaron dotlessi

155 233 — otilde guilsinglright lslash

156 234 — uacute oe oe

157 235 — ugrave bullet scaron

158 236 — ucircumflex bullet zcaron

159 237 — udieresis Ydieresis —

160 240 — dagger space —

161 241 exclamdown degree exclamdown exclamdown

162 242 cent cent cent cent

163 243 sterling sterling sterling sterling

164 244 fraction section currency currency

165 245 yen bullet yen yen

166 246 florin paragraph brokenbar brokenbar

167 247 section germandbls section section

168 250 currency registered dieresis dieresis

169 251 quotesingle copyright copyright copyright

170 252 quotedblleft trademark ordfeminine ordfeminine

171 253 guillemotleft acute guillemotleft guillemotleft

172 254 guilsinglleft dieresis logicalnot logicalnot

173 255 guilsinglright — hyphen —

174 256 fi AE registered registered

175 257 fl Oslash macron macron

176 260 — — degree degree

177 261 endash plusminus plusminus plusminus

178 262 dagger — twosuperior twosuperior

179 263 daggerdbl — threesuperior threesuperior

180 264 periodcentered yen acute acute

181 265 — mu mu mu

182 266 paragraph — paragraph paragraph

183 267 bullet — periodcentered periodcentered

184 270 quotesinglbase — cedilla cedilla

185 271 quotedblbase — onesuperior onesuperior

186 272 quotedblright — ordmasculine ordmasculine

187 273 guillemotright ordfeminine guillemotright guillemotright

Code
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal

PDF Reference Manual February 23, 1996 Predefined Font Encodings

258 Appendix C: Predefined Font Encodings

188 274 ellipsis ordmasculine onequarter onequarter

189 275 perthousand — onehalf onehalf

190 276 — ae threequarters threequarters

191 277 questiondown oslash questiondown questiondown

192 300 — questiondown Agrave Agrave

193 301 grave exclamdown Aacute Aacute

194 302 acute logicalnot Acircumflex Acircumflex

195 303 circumflex — Atilde Atilde

196 304 tilde florin Adieresis Adieresis

197 305 macron — Aring Aring

198 306 breve — AE AE

199 307 dotaccent guillemotleft Ccedilla Ccedilla

200 310 dieresis guillemotright Egrave Egrave

201 311 — ellipsis Eacute Eacute

202 312 ring space Ecircumflex Ecircumflex

203 313 cedilla Agrave Edieresis Edieresis

204 314 — Atilde Igrave Igrave

205 315 hungarumlaut Otilde Iacute Iacute

206 316 ogonek OE Icircumflex Icircumflex

207 317 caron oe Idieresis Idieresis

208 320 emdash endash Eth Eth

209 321 — emdash Ntilde Ntilde

210 322 — quotedblleft Ograve Ograve

211 323 — quotedblright Oacute Oacute

212 324 — quoteleft Ocircumflex Ocircumflex

213 325 — quoteright Otilde Otilde

214 326 — divide Odieresis Odieresis

215 327 — — multiply multiply

216 330 — ydieresis Oslash Oslash

217 331 — Ydieresis Ugrave Ugrave

218 332 — fraction Uacute Uacute

219 333 — currency Ucircumflex Ucircumflex

220 334 — guilsinglleft Udieresis Udieresis

221 335 — guilsinglright Yacute Yacute

222 336 — fi Thorn Thorn

223 337 — fl germandbls germandbls

224 340 — daggerdbl agrave agrave

225 341 AE periodcentered aacute aacute

226 342 — quotesinglbase acircumflex acircumflex

227 343 ordfeminine quotedblbase atilde atilde

228 344 — perthousand adieresis adieresis

229 345 — Acircumflex aring aring

Code
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal

PDF Reference Manual February 23, 1996 Predefined Font Encodings

C.2 Predefined encodings sorted by character code 259

230 346 — Ecircumflex ae ae

231 347 — Aacute ccedilla ccedilla

232 350 Lslash Edieresis egrave egrave

233 351 Oslash Egrave eacute eacute

234 352 OE Iacute ecircumflex ecircumflex

235 353 ordmasculine Icircumflex edieresis edieresis

236 354 — Idieresis igrave igrave

237 355 — Igrave iacute iacute

238 356 — Oacute icircumflex icircumflex

239 357 — Ocircumflex idieresis idieresis

240 360 — — eth eth

241 361 ae Ograve ntilde ntilde

242 362 — Uacute ograve ograve

243 363 — Ucircumflex oacute oacute

244 364 — Ugrave ocircumflex ocircumflex

245 365 dotlessi dotlessi otilde otilde

246 366 — circumflex odieresis odieresis

247 367 — tilde divide divide

248 370 lslash macron oslash oslash

249 371 oslash breve ugrave ugrave

250 372 oe dotaccent uacute uacute

251 373 germandbls ring ucircumflex ucircumflex

252 374 — cedilla udieresis udieresis

253 375 — hungarumlaut yacute yacute

254 376 — ogonek thorn thorn

255 377 — caron ydieresis ydieresis

Code
StandardEncoding MacRomanEncoding WinAnsiEncoding PDFDocEncoding

Decimal Octal

PDF Reference Manual February 23, 1996 Predefined Font Encodings

260 Appendix C: Predefined Font Encodings

C.3 MacExpert encoding

Char Name
Code

Char Name
Code

Decimal Octal Decimal Octal



AEsmall 190 276



Lslashsmall 194 302



Aacutesmall 135 207



Lsmall 108 154



Acircumflexsmall 137 211



Macronsmall 244 364



Acutesmall 39 47



Msmall 109 155



Adieresissmall 138 212



Nsmall 110 156



Agravesmall 136 210



Ntildesmall 150 226



Aringsmall 140 214



OEsmall 207 317



Asmall 97 141



Oacutesmall 151 227



Atildesmall 139 213



Ocircumflexsmall 153 231



Brevesmall 243 363



Odieresissmall 154 232



Bsmall 98 142



Ogoneksmall 242 362



Caronsmall 174 256



Ogravesmall 152 230



Ccedillasmall 141 215



Oslashsmall 191 277



Cedillasmall 201 311



Osmall 111 157



Circumflexsmall 94 136



Otildesmall 155 233



Csmall 99 143



Psmall 112 160



Dieresissmall 172 254



Qsmall 113 161



Dotaccentsmall 250 372



Ringsmall 251 373



Dsmall 100 144



Rsmall 114 162



Eacutesmall 142 216



Scaronsmall 167 247



Ecircumflexsmall 144 220



Ssmall 115 163



Edieresissmall 145 221



Thornsmall 185 271



Egravesmall 143 217



Tildesmall 126 176



Esmall 101 145



Tsmall 116 164



Ethsmall 68 104



Uacutesmall 156 234



Fsmall 102 146



Ucircumflexsmall 158 236



Gravesmall 96 140



Udieresissmall 159 237



Gsmall 103 147



Ugravesmall 157 235



Hsmall 104 150



Usmall 117 165



Hungarumlautsmall 34 42



Vsmall 118 166



Iacutesmall 146 222



Wsmall 119 167



Icircumflexsmall 148 224



Xsmall 120 170



Idieresissmall 149 225



Yacutesmall 180 264



Igravesmall 147 223



Ydieresissmall 216 330



Ismall 105 151



Ysmall 121 171



Jsmall 106 152



Zcaronsmall 189 275



Ksmall 107 153



Zsmall 122 172

PDF Reference Manual February 23, 1996 Predefined Font Encodings

C.3 MacExpert encoding 261



ampersandsmall 38 46



lsuperior 241 361



asuperior 129 201



msuperior 247 367



bsuperior 245 365

₉

nineinferior 187 273



centinferior 169 251



nineoldstyle 57 71



centoldstyle 35 43

⁹

ninesuperior 225 341



centsuperior 130 202

ⁿ

nsuperior 246 366

:

colon 58 72

․

onedotenleader 43 53

₡

colonmonetary 123 173

⅛

oneeighth 74 112

,

comma 44 54



onefitted 124 174



commainferior 178 262

½

onehalf 72 110



commasuperior 248 370

₁

oneinferior 193 301



dollarinferior 182 266



oneoldstyle 49 61



dollaroldstyle 36 44

¼

onequarter 71 107



dollarsuperior 37 45

¹

onesuperior 218 332



dsuperior 235 353

⅓

onethird 78 116

₈

eightinferior 165 245



osuperior 175 257



eightoldstyle 56 70

₍

parenleftinferior 91 133

⁸

eightsuperior 161 241

⁽

parenleftsuperior 40 50



esuperior 228 344

₎

parenrightinferior 93 135



exclamdownsmall 214 326

⁾

parenrightsuperior 41 51



exclamsmall 33 41

.

period 46 56

ff

ff 86 126



periodinferior 179 263

ffi

ffi 89 131



periodsuperior 249 371

ffl

ffl 90 132



questiondownsmall 192 300

fi

fi 87 127



questionsmall 63 77

‒

figuredash 208 320



rsuperior 229 345

⅝

fiveeighths 76 114



rupiah 125 175

₅

fiveinferior 176 260

;

semicolon 59 73



fiveoldstyle 53 65

⅞

seveneighths 77 115

⁵

fivesuperior 222 336

₇

seveninferior 166 246

fl

fl 88 130



sevenoldstyle 55 67

₄

fourinferior 162 242

⁷

sevensuperior 224 340



fouroldstyle 52 64

₆

sixinferior 164 244

⁴

foursuperior 221 335



sixoldstyle 54 66

⁄

fraction 47 57

⁶

sixsuperior 223 337

-

hyphen 45 55 space 32 40



hypheninferior 95 137



ssuperior 234 352



hyphensuperior 209 321

⅜

threeeighths 75 113



isuperior 233 351

₃

threeinferior 163 243

Char Name
Code

Char Name
Code

Decimal Octal Decimal Octal

PDF Reference Manual February 23, 1996 Predefined Font Encodings

262 Appendix C: Predefined Font Encodings



threeoldstyle 51 63

¾

threequarters 73 111



threequartersemdash 61 75

³

threesuperior 220 334



tsuperior 230 346

‥

twodotenleader 42 52

₂

twoinferior 170 252



twooldstyle 50 62

²

twosuperior 219 333

⅔

twothirds 79 117

₀

zeroinferior 188 274



zerooldstyle 48 60

⁰

zerosuperior 226 342

Char Name
Code

Char Name
Code

Decimal Octal Decimal Octal

PDF Reference Manual April 16, 1996 Appendix D: Implementation Limits

263

APPENDIX D

Implementation Limits

In general, PDF does not restrict the size or quantity of things described in
the file format, such as numbers, arrays, images, and so on. However, a PDF
viewer application running on a particular processor and in a particular
operating environment does have such limits. If a viewer application
attempts to perform an action that exceeds one of the limits, it will display
an error.

PostScript interpreters also have implementation limits, listed in Appendix
B of the PostScript Language Reference Manual, Second Edition. It is
possible to construct a PDF file that does not violate viewer application
limits but will not print on a PostScript printer. Keep in mind that these
limits vary according to the PostScript language level, interpreter version,
and the amount of memory available to the interpreter.

All limits are sufficiently large that most PDF files should never approach
them. However, using the techniques described in Chapters 8 through 12 of
this book will further reduce the chance of reaching these limits.

This appendix describes typical limits for Acrobat Exchange and Acrobat
Reader. These limits fall into two main classes:

• Architectural limits. The hardware on which a viewer application
executes imposes certain constraints. For example, an integer is usually
represented in 32 bits, limiting the range of allowed integers. In addition,
the design of the software imposes other constraints, such as a limit of
65,535 elements in an array or string.

• Memory limits. The amount of memory available to a viewer application
limits the number of memory-consuming objects that can be held
simultaneously.

PDF itself has one architectural limit. Because ten digits are allocated to
byte offsets, the size of a file is limited to 1010 bytes (approximately 10GB).

PDF Reference Manual April 16, 1996 Appendix D: Implementation Limits

264 Appendix D: Implementation Limits

Table D.1 describes the architectural limits for most PDF viewer
applications running on 32-bit machines. These limits are likely to remain
constant across a wide variety of implementations. However, memory limits
will often be exceeded before architectural limits, such as the limit on the
number of PDF objects, are reached.

Table D.1 Architectural limits

Quantity Limit Explanation

integer 2,147,483,647 Largest positive value, 231 − 1.

−2,147,483,648 Largest negative value, −231.

real ±32,767 Approximate range of values.

±1/65,536 Approximate smallest non-zero value.

5 Approximate number of decimal digits of precision in fractional part.

array 65,535 Maximum number of elements in an array.

dictionary 65,535 Maximum number of key–value pairs in a dictionary.

string 65,535 Maximum number of characters in a string.

name 127 Maximum number of characters in a name.

indirect object 250,000 Maximum number of indirect objects in a PDF file.

Memory limits cannot be characterized so precisely, because the amount of
available memory and the way in which it is allocated vary from one
implementation to another.

Memory is automatically reallocated from one use to another when
necessary. When more memory is needed for a particular purpose, it can be
taken away from memory allocated to another purpose if that memory is
currently unused or its use is non-essential (a cache, for example.) Also,
data is often saved to a temporary file when memory is limited. Because of
this behavior, it is not possible to state limits for such items as the number of
pages, number of text annotations or hypertext links on a page, number of
graphics objects on a page, or number of fonts on a page or in a document.

PDF Reference Manual April 16, 1996 Appendix D: Implementation Limits

 265

Version 1.0 of Acrobat Exchange and Acrobat Reader have some additional
architectural limits:

• Thumbnails may be no larger than 106×106 samples, and should be
created at one-eighth scale for 8.5×11 inch and A4 size pages.
Thumbnails should use either the DeviceGray or direct or indexed
DeviceRGB color space.

• The minimum allowed page size is 1×1 inch (72×72 units in the default
user space coordinate system), and the maximum allowed page size is
45×45 inches (3240×3240 units in the default user space coordinate
system).

• The zoom factor of a view is constrained to be between 12% and 800%,
regardless of the zoom factor specified in the PDF file.

• When Acrobat Exchange or Acrobat Reader reads a PDF file with a
damaged or missing cross-reference table, it attempts to rebuild the table
by scanning all the objects in the file. However, the generation numbers
of deleted entries are lost if the cross-reference table is missing or
severely damaged. Reconstruction fails if any object identifiers do not
occur at the start of a line or if the endobj keyword does not appear at
the start of a line. Also, reconstruction fails if a stream contains a line
beginning with the word endstream, aside from the required
endstream that delimits the end of the stream.

PDF Reference Manual April 16, 1996 Appendix D: Implementation Limits

266 Appendix D: Implementation Limits

PDF Reference Manual April 16, 1996 Appendix E: Obtaining XUIDs and Technical

267

APPENDIX E

Obtaining XUIDs and
Technical Notes

Creators of widely distributed forms who wish to use the XUID mechanism
must obtain an organization ID from Adobe Systems Incorporated at the
addresses listed below.

Technical notes, technical support, and periodic mailings are available to
members of the Adobe Developers Association. In particular, the PostScript
language software development kit (SDK) contains all the technical notes
mentioned in this book. The Adobe Developers Association can be
contacted at the addresses listed below:

Europe:
Adobe Developers Association
Adobe Systems Europe B.V.
Europlaza
Hoogoorddreef 54a
1101 BE Amsterdam Z-O
The Netherlands
Telephone: +44-131-458-6800
Fax: +44-131-458-6801

U.S. and the rest of the world:
Adobe Developers Association
Adobe Systems Incorporated
1585 Charleston Road
P.O. Box 7900
Mountain View, CA 94039-7900
Telephone: (415) 961–4111
Fax: (415) 969–4138

PDF Reference Manual April 16, 1996 Appendix E: Obtaining XUIDs and Technical

268 Appendix E: Obtaining XUIDs and Technical Notes

In addition, some technical notes and other information may be available
from Adobe’s World Wide Web server

http://www.adobe.com

and from an anonymous ftp site

ftp.adobe.com

When accessing the anonymous ftp site, use “anonymous” as the user name,
and provide your E-mail address as the password (for example,
smith@adobe.com).

http://www.adobe.com

PDF Reference Manual April 16, 1996 Appendix F: PDF Name Registry

269

APPENDIX F

PDF Name Registry

With the introduction of Adobe Acrobat 2.0, it has become easy for third
parties to add private data to PDF documents and to add plug-ins that
change viewer behavior based on this data. However, Acrobat users have
certain expectations when opening a PDF document, no matter what plug-
ins are available. PDF enforces certain restrictions on private data in order
to meet these expectations.

A PDF producer or Acrobat viewer plug-in may define new action,
destination, annotation, and security handler types. If a user opens a PDF
document and the plug-in that implements the new type of object is
unavailable, the viewers will behave as described in Appendix G.2, “Viewer
compatibility behavior."

A PDF producer or Acrobat plug-in may also add keys to any PDF object
that is implemented as a dictionary except the trailer dictionary.

To avoid conflicts with third-party names and with future versions of PDF,
Adobe maintains a registry, similar to the registry it maintains for Document
Structuring Conventions. Third-party developers must only add private data
that conforms to the registry rules. The registry includes three classes:

• First-class — Names and data of value to a wide range of developers. All
the names defined in PDF 1.0 and 1.1 are first-class names. Plug-ins that
are publicly available should often use first-class names for their private
data. First class names and data formats must be registered with Adobe,
and will be made available for all developers to use. To submit a private
data name and format for consideration as first-class, contact Adobe’s
Developer Support group, as described later in this section.

• Second-class — Names that are applicable to a specific developer.
(Adobe does not register second-class data formats.) Adobe distributes
second-class names by registering developer-specific prefixes, which
must be used as the first characters in the names of all private data added

PDF Reference Manual April 16, 1996 Appendix F: PDF Name Registry

270 Appendix F: PDF Name Registry

by the developer. Adobe will not register the same prefix to two different
developers, ensuring that different developers’ second-class names will
not conflict. It is up to each developer to ensure that they do not use the
same name in conflicting ways themselves. To request a prefix for
second-class names, contact Adobe’s Developer Support group, as
described later in this section.

• Third-class — Names that can be used only in files that will never be
seen by other third parties, because they may conflict with third-class
names defined by others. Third-class names all begin with a specific
prefix reserved by Adobe for private plug-ins; this prefix is XX. This
prefix must be used as the first characters in the names of all private data
added by the developer. It it not necessary to contact Adobe to register
third-class names.

Note New keys for the Info dictionary in the Catalog and in Threads need not be
registered.

To register either first- or second-class names, contact Adobe’s Developer
Support group at (415) 961-4111, or send e-mail to

devsup-person@adobe.com

PDF Reference Manual April 16, 1996 Appendix G: Compatibility

271

APPENDIX G

Compatibility

The goal of the Adobe Acrobat family of products is to enable people to
easily and reliably exchange and view electronic documents. Ideally, “easily
and reliably” means that any Acrobat viewer should be able to display the
contents of any PDF file even if the PDF file was created long before or long
after the viewer. Of course, new versions of viewers are introduced to
provide additional capabilities not present before. Furthermore, beginning
with Acrobat 2.0, viewers may accept plug-in extensions, making some
Acrobat 2.0 viewers more capable than others depending on what
extensions are present. Both the viewers and PDF itself have been designed
to enable users to view everything in the document that the viewer
understands and to ignore or inform the user about objects not understood.
The decision whether to ignore or inform the user is made on a feature-by-
feature basis.

The original PDF specification did not specify how a viewer should behave
when it reads a file that does not conform to the specification. This
addendum provides this information. The PDF version number associated
with a file determines how it should be treated when a viewer encounters a
problem.

G.1 Version numbers

The PDF version number consists of a major and minor version. The
version number is part of the PDF header, the first line of the file. This
header takes the form:

%PDF-M.m

where M is the major number and m is the minor number.

PDF Reference Manual April 16, 1996 Appendix G: Compatibility

272 Appendix G: Compatibility

If PDF changes in a way that current viewers will be unlikely to read a
document without a serious error, the major version number will be
incremented. A serious error is an error that prevents pages from being
viewed. Adding a new filter type for page contents would require a change
in the major version number. Adding a new page description operator would
not.

If PDF changes in a way that a viewer will display an error message but
continue its work, the minor version number will change. Adding new page
description operators would require a change in the minor version number.

If PDF changes in a way that current viewers are unlikely to detect, the
version number need not change.This includes the addition of private data
that can be gracefully ignored by consumers that do not understand that
data. An example is adding a key to a dictionary object such as the Catalog.

An Acrobat viewer will try to read any file with a valid PDF header, even if
the version number is newer than the viewer itself. It will read without
errors any file that does not require a plug-in, even if the version number is
older than the viewer. Some documents may require a plug-in to display an
annotation or execute a link or bookmark action. Viewer behavior in this
situation is described below. However, a plug-in is never required to display
the contents of a page.

If a viewer opens a document with a newer major version number than it
expects, it warns the user that it is unlikely to be able to read the document
successfully and that the user will not be able to change or save the
document. At the first error related to document processing, the viewer will
notify the user that an error has occurred but that no further errors will be
reported. (Some errors will always be reported, including file I/O errors,
extension loading errors, out-of-memory errors, and notification that a
command failed.) Processing will continue if possible. Acrobat Exchange
will not permit a document with a newer major version number to be
inserted into another document.

If a viewer opens a document with a newer minor version number than it
expects, it silently remembers the version number. Only if it encounters an
error does it alert the user. At this point it notifies the user that the document
is newer than expected, that an error has occurred, and that no further errors
will be reported. The document may not be incrementally saved but can be
saved to a new file. The saved file will continue to have the new version
number. A user may insert a document with a newer minor version into
another document. The resulting document can be saved. Its version number
will be the maximum of the version number of the original document and
the documents inserted into the original.

PDF Reference Manual April 16, 1996 Appendix G: Compatibility

G.2 Viewer compatibility behavior 273

When opening a file, the Acrobat viewers are very liberal in their check for a
valid PDF header. All viewers allow the header to appear anywhere in the
first 1,000 bytes of the file. The 1.0 viewers require only that "%PDF-"
appear in the header, but ignore the rest of the header. The 2.0 viewers
search for a header of the form described above. However, they also accept
a header of the form:

%!PS-Adobe-N.n PDF-M.m

where N.n is an Adobe Document Structuring Conventions version number
and M.m is a PDF version number. (The PostScript Language Reference
Manual describes the Document Structuring Conventions).

G.2 Viewer compatibility behavior

This section describes how the Acrobat 1.0 and 2.0 viewers behave when
encountering items that do not conform to the PDF 1.0 specification. It is
planned that future Acrobat viewers will behave the same as Acrobat 2.0
viewers.

G.2.1 Dictionary keys

Adding key-value pairs not described in the PDF specification to dictionary
objects usually does not affect the behavior of 1.0 viewers and never affects
the behavior of Acrobat 2.0 viewers. These keys are ignored. If a dictionary
object such as an annotation is copied into another document during a page
insertion (or in Acrobat 2.0 viewers during a page extraction), all key-value
pairs are copied. If a value is an indirect reference to another object, that
object may be copied as well, depending on the key.

In some cases a 1.0 viewer will display an error if it finds an unknown key
in a dictionary. These cases are keys in image dictionaries (both XObjects
and in-line images) and keys in DecodeParms dictionaries for filters.

See Appendix F for information on how to choose key names that are
compatible with future versions of PDF.

G.2.2 Annotations

An annotation is a dictionary element of a page’s Annots array. Its
Subtype specifies the kind of annotation it is. Only Text and Link are
defined by PDF 1.0. If a 1.0 viewer reads a page with an annotation whose
Subtype is not Text or Link, it displays an error. It displays one error per
page no matter how many annotations are present.

PDF Reference Manual April 16, 1996 Appendix G: Compatibility

274 Appendix G: Compatibility

An Acrobat 2.0 viewer displays unknown annotations in a closed form
similar to text annotations, with an icon containing a question mark. If the
user opens the annotation, an alert appears with a message giving the
annotation type and explaining that an unavailable plug-in is required to
open it. An unknown annotation can be selected, moved, and deleted. Every
annotation type must specify its position and size using the Rect key.

G.2.3 Destinations and actions

A link or a bookmark in PDF 1.0 is a dictionary that contains a Dest key
that specifies a new view of the document that should be displayed when the
link or bookmark is activated. A destination is an array. Its first element is a
name that serves as destination type that determines the interpretation of
subsequent array elements. If a 1.0 viewer encounters an unknown
destination type, no action is performed and no error is reported when the
user activates the link or bookmark. An Acrobat 2.0 viewer will display a
message when it finds an unknown destination type.

PDF 1.1 adds several new destination types described in Section 6.6.3,
“Destinations.” This section also describes actions, which have superseded
destinations in PDF 1.1. An Acrobat 1.0 viewer ignores actions. It does
nothing if it does not find a Dest key in a link or bookmark.

G.2.4 XObjects

An XObject is a stream or dictionary that is referred to by name from a page
description by the Do operator. The effect of the operator is determined by
the type of the XObject. PDF 1.0 supports Image and Form XObjects. A 1.0
viewer displays an error for each XObject of a different type, no matter how
many are on a page.

Plug-ins may not add XObject types, since they are considered part of the
page and a viewer without plug-ins should always be able to display a page.
If an Acrobat 2.0 viewer encounters an unknown XObject type, it will be in
a document with a PDF version number greater than 1.1. The viewer will
display an error specifying the type of XObject but not report any further
errors.

To avoid the 1.0 viewers’ error behavior, new XObject types in PDF 1.1 can
be specified as Forms, providing the required Form keys but having no
content. The required keys are Name, BBox, FormType, and Matrix.
Subtype2 can specify the actual type, and additional keys can specify
additional information. See Section 6.8.6, “XObject resources,” for a
description of the one new XObject type added in PDF 1.1.

PDF Reference Manual April 16, 1996 Appendix G: Compatibility

G.2 Viewer compatibility behavior 275

A 1.0 viewer checks the FormType and displays an error once per form if
the FormType is not 1. It also displays an error that it cannot find the form
each the time a page references the form. An Acrobat 2.0 viewer checks that
the FormType is 1 and puts up an error once per document and then
ignores the form if its FormType is not 1.

G.2.5 Color spaces

An image has a ColorSpace key. A 1.0 viewer displays an error each time
it finds an image with a color space that is not one of the PDF 1.0 color
spaces. Like XObjects, color spaces may not be added by plug-ins. If an
Acrobat 2.0 viewer encounters an unknown color space, it will be in a
document with a PDF version number greater than 1.1. The viewer will
display an error specifying the type of color space but not report any further
errors.

PDF 1.1 defines three additional color spaces: CalGray, CalRGB, and
Lab. To be more compatible with 1.0 viewers, PDF 1.1 allows an image
color space to be specified indirectly through the page resources. When an
Acrobat 2.0 viewer processes an image and the image’s ColorSpace key
specifies DeviceRGB, the viewer looks in the page’s resources for a color
space called DefaultRGB. If this key is present, the color space associated
with it is used instead of DeviceRGB. Similarly, if an image’s
ColorSpace key specifies DeviceGray, the viewer looks for
DefaultGray. The 1.0 viewer ignores DefaultRGB and DefaultGray.

See Section 7.4 on page 148 for an explanation of the use of color spaces in
page descriptions. The presence of DefaultRGB or DefaultGray change
the interpretation of some color operators.

G.2.6 Filters

PDF uses stream objects to encapsulate image, indexed color space,
thumbnail, and embedded font data and page, form, and Type 3 character
descriptions. These streams usually use filters to compress their data. The
legal PDF 1.0 filters are the same as those available in PostScript Level 2.
The 1.0 viewer behavior when encountering an unknown filter depends on
its context, as described in Table G.1.

PDF Reference Manual April 16, 1996 Appendix G: Compatibility

276 Appendix G: Compatibility

Table G.1 Acrobat 1.0 Viewer behavior with unknown filters

Context Behavior

Image resource The image does not appear but no error is reported.

In-line image (An in-line image is specified directly in a page description, while an image
resource is specified outside of a page and referenced from the page.) An
error is reported, and page processing stops.

Indexed color space An error is reported, but page processing continues.

Thumbnail An error is reported, no more thumbnails are displayed, but the thumbnails
can be deleted and created again.

Embedded font An error is reported, and the viewer behaves as if the font is not embedded.

Page description An error is reported, and page processing stops.

Form description An error is reported, and page processing stops.

Type 3 character description An error is reported, and page processing stops.

The Acrobat 2.0 viewers do not allow plug-ins to provide additional filters.
If an unrecognized filter is encountered, an Acrobat 2.0 viewer will specify
the context in which the filter was found. If an error occurs while displaying
a page, only the first error is reported. Subsequent behavior depends on the
context, as described in Table G.2.

PDF Reference Manual April 16, 1996 Appendix G: Compatibility

G.2 Viewer compatibility behavior 277

Table G.2 Acrobat 2.0 Viewer behavior with unknown filters

Context Behavior

Image resource The image does not appear but page processing continues.

In-line image Page processing stops.

Indexed color space The image does not appear but page processing continues.

Thumbnail An error is reported, no more thumbnails are displayed, but the thumbnails
can be deleted and created again.

Embedded font The viewer behaves as if the font had not been embedded.

Page description Page processing stops.

Form description The form does not appear but page processing continues.

Type 3 character description The character does not appear but page processing continues. The current
point is adjusted based on the character’s width.

Operations that process pages, such as Find and Create Thumbnails, stop as
soon as an error occurs.

G.2.7 Page description operators

A 1.0 viewer reports an error the first time it finds an unknown operator or
an operator with too few operands, but it continues processing the page. If it
finds ten errors on a page, it reports back to the user and asks whether to
continue processing. No further errors are reported. Each time an error
occurs, the operand stack is cleared. Acrobat 2.0 viewers behave the same,
although there is no additional warning if ten errors are encountered.

PDF 1.1 provides new page description operators for specifying device-
independent color and pass-through PostScript fragments. Since these
operators are incompatible with 1.0 viewers, PDF 1.1 provides alternative
compatible methods as well.

PDF Reference Manual April 16, 1996 Appendix G: Compatibility

278 Appendix G: Compatibility

G.2.8 Procedure sets

Each page includes a ProcSet resource that describe the PostScript
procedure sets required to print the page. A 1.0 viewer ignores requests for
unknown procedure sets. An Acrobat 2.0 viewer warns the user that a
procedure set is unavailable and cancels printing.

G.2.9 Uniform Resource Identifiers

Acrobat 1.0 viewers report no error when a link annotation that uses the
URI action is invoked. The link inverts its color and performs no action.
Acrobat 2.0 viewers report the following error when a link annotation that
uses the URI action is invoked: “The plug-in required by this ‘URI’ action is
unavailable.”

G.2.10 Movie Annotations

Acrobat 1.0 viewers report the following error when they encounter an
annotation of type Movie: “An error occurred while reading a note or link.
Unknown annotation type.” The annotation does not appear on the
document. Acrobat 2.0 viewers report the following error when they
encounter an annotation of type Movie: “The Plug-in required by this
‘Movie’ annotation is unavailable.” The annotation is displayed as a grayed
rectangle with a question-mark.

PDF Reference Manual April 16, 1996 Bibliography

279

Bibliography

[1] Adobe Systems Incorporated, PostScript Language Reference
Manual, Second Edition, Addison-Wesley, 1990, ISBN 0-201-10174-2.
Reference manual describing the imaging model used in the PostScript
language and the language itself.

[2] Adobe Systems Incorporated, Supporting Data Compression in
PostScript Level 2 and the Filter Operator, Adobe Developer Support
Technical Note 5115.

[3] Adobe Systems Incorporated, Supporting the DCT Filters in
PostScript Level 2, Adobe Developer Support Technical Note 5116.
Contains errata for the JPEG discussion in the PostScript Language
Reference Manual, Second Edition. Also describes the compatibility of the
JPEG implementation with various versions of the JPEG standard.

[4] Adobe Systems Incorporated, Adobe Type 1 Font Format, Addison-
Wesley, 1990, ISBN 0-201-57044-0. Explains the internal organization of a
PostScript language Type 1 font program.

[5] Adobe Systems Incorporated, Adobe Type 1 Font Format: Multiple
Master Extensions, Adobe Developer Support Technical Note 5086.
Describes the additions made to the Type 1 font format to support multiple
master fonts.

[6] Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Ullman, Data
Structures and Algorithms, Addison-Wesley, 1983, ISBN 0-201-00023-7.
Includes a discussion of balanced trees.

[7] Arvo, James (ed.), Graphics Gems II, Academic Press, 1991, ISBN 0-
12-064480-0. The section “Geometrically Continuous Cubic Bézier
Curves” by Hans-Peter Seidel describes the mathematics used to smoothly
join two cubic Bézier curves.

PDF Reference Manual April 16, 1996 Bibliography

280 Bibliography

[8] Berners-Lee, T., and D. Connolly. Internet RFC 1866, Hypertext
Markup Language 2.0 Proposed Standard. November 1995. For updates,
see http://www.w3.org/pub/WWW/MarkUp/html-spec.

[9] Berners-Lee, T., Masinter, McCahill, and the Network Working
Group. Internet RFC 1738, Uniform Resource Locators.
<URL:ftp://ds.internic.net/rfc/rfc1738.txt;type=a>

[10] CCITT, Blue Book, Volume VII.3, 1988. ISBN 92-61-03611-2.
Recommendations T.4 and T.6 are the CCITT standards for Group 3 and
Group 4 facsimile encoding. This document may be purchased from Global
Engineering Documents, P.O. Box 19539, Irvine, California 92713.

[11] CCITT, Recommendation X.208: Specification of Abstract Syntax
Notation One (ASN.1), 1988.

[12] Fielding, Network Working Group. Internet RFC 1808, Relative
Uniform Resource Locators.
<URL:ftp://ds.internic.net/rfc/rfc1808.txt;type=a>

[13] Foley, James D., Andries van Dam, Steven K. Feiner, and John F.
Hughes, Computer Graphics: Principles and Practice, Second Edition,
Addison-Wesley, 1990, ISBN 0-201-12110-7. Section 11.2, “Parametric
Cubic Curves”, contains a description of the mathematics of cubic Bézier
curves and a comparison of various types of parametric cubic curves.

[14] Glassner, Andrew S. (ed.), Graphics Gems, Academic Press, 1990,
ISBN 0-12-286165-5. The section “An Algorithm For Automatically Fitting
Digitized Curves” by Philip J. Schneider describes an algorithm for
determining the set of Bézier curves approximating an arbitrary set of user-
provided points. Appendix 2 contains an implementation of the algorithm,
written in the C programming language. Other sections relevant to the
mathematics of Bézier curves include “Solving the Nearest-Point-On-Curve
Problem” by Philip J. Schneider, “Some Properties of Bézier Curves” by
Ronald Goldman, and “A Bézier Curve-Based Root-Finder” by Philip J.
Schneider. The source code appearing in the appendix is available via
anonymous ftp, as described in the preface to Graphics Gems III.

[15] Joint Photographic Experts Group (JPEG) “Revision 8 of the JPEG
Technical Specification,” ISO/IEC JTC1/SC2/WG8, CCITT SGVIII,
August 14, 1990. Defines a set of still-picture grayscale and color image
data compression algorithms.

[16] Kirk, David (ed.), Graphics Gems III, Academic Press, 1992, ISBN 0-
12-409670-0 (with IBM Disk) or ISBN 0-12-409671-9 (with Macintosh
disk). The section “Interpolation Using Bézier Curves” by Gershon Elber

http://www.w3.org/pub/WWW/MarkUp/html-spec
ftp://ds.internic.net/rfc/rfc1738.txt
ftp://ds.internic.net/rfc/rfc1808.txt

PDF Reference Manual April 16, 1996 Bibliography

 281

contains an algorithm for calculating a Bézier curve that passes through a
user-specified set of points. The algorithm utilizes not only cubic Bézier
curves, which are supported in PDF, but also higher-order Bézier curves.
The appendix contains an implementation of the algorithm, written in the C
programming language. All of the source code appearing in the appendix is
available via anonymous ftp, as described in the preface.

[17] Microsoft Corp., TrueType 1.0 Font Files, Revision 1.00, May 1992.

[18] Pennebaker, W. B. and Joan L. Mitchell, JPEG Still Image Data
Compression Standard, Van Nostrand Reinhold, 1993, ISBN 0-442-01272-
1.

[19] Ron Rivest, RFC 1321: The MD5 Message-Digest Algorithm, April
1992.

[20] Warnock, John and D. Wyatt, “A Device Independent Graphics
Imaging Model for Use with Raster Devices,” Computer Graphics (ACM
SIGGRAPH), Volume 16, Number 3, July 1982. Technical background for
the imaging model used in the PostScript language.

PDF Reference Manual April 16, 1996 Bibliography

282 Bibliography

PDF Reference Manual April 16, 1996 Colophon

283

Colophon

This book was produced electronically using Adobe FrameMaker® on the
Macintosh® and Sun™ SPARCstation® computers. Art was produced using
Adobe Photoshop®, Adobe Illustrator, and Adobe FrameMaker on the
Macintosh. Film was produced with the PostScript language on an Agfa-
Compugraphic SelectSet™ 5000 imagesetter.

Authors—Tim Bienz, Richard Cohn, and Jim Meehan

Key Contributors—Alan Wootton, Nabeel Al-Shamma

Editors—Gary Staas, Diana Wynne

Illustrations and Book Production—Lauren Buchholz

Cover Design—Nancy Winters

Reviewers—Nabeel Al-Shamma, David Gelphman, Sherri Nichols,
Paul Rovner, Alan Wootton, Jim Pravetz, and numerous others at Adobe
Systems

Publication Management—Patrick Ames

Project Management—Rob Babcock, Bob Wulff

PDF Reference Manual April 16, 1996 Colophon

284 Colophon

	Contents
	Figures
	Tables
	Examples
	Introduction
	1.1 About this book
	1.2 Introduction to Version 1.1—PDF 1.1
	1.3 Conventions used in this book
	1.4 A note on syntax
	1.5 Copyrights and permissions to use PDF

	Portable Document Format
	Overview
	2.1 What is the Portable Document Format?
	2.2 Using PDF
	2.3 General properties
	2.4 PDF and the PostScript language
	2.5 Understanding PDF

	Coordinate Systems
	3.1 Device space
	3.2 User space
	3.3 Text space
	3.4 Character space
	3.5 Image space
	3.6 Form space
	3.7 Relationships among coordinate systems
	3.8 Transformations between coordinate systems
	3.9 Transformation matrices

	Objects
	4.1 Introduction
	4.2 Booleans
	4.3 Numbers
	4.4 Strings
	4.5 Names
	4.6 Arrays
	4.7 Dictionaries
	4.8 Streams
	4.9 The null object
	4.10 Indirect objects
	4.11 Object references

	File Structure
	5.1 Introduction
	5.2 Header
	5.3 Body
	5.4 Cross-reference table
	5.5 Trailer
	5.6 Incremental update
	5.7 Encryption

	Document Structure
	6.1 Introduction
	6.2 Catalog
	6.3 Pages tree
	6.4 Page objects
	6.5 Thumbnails
	6.6 Annotations
	6.7 Outline tree
	6.8 Resources
	6.9 Info dictionary
	6.10 Articles
	6.11 File ID
	6.12 Encryption dictionary

	Page Descriptions
	7.1 Overview
	7.2 Graphics state
	7.3 Graphics state operators
	7.4 Color operators
	7.5 Path operators
	7.6 Text state
	7.7 Text operators
	7.8 XObject operator
	7.9 In-line image operators
	7.10 Type 3 font operators
	7.11 In-line pass-through PostScript fragments
	7.12 Compatibility operators

	Optimizing PDF Files
	General Techniques for Optimizing PDF Files
	8.1 Use short names
	8.2 Use direct and indirect objects appropriately
	8.3 Take advantage of combined operators
	8.4 Remove unnecessary clipping paths
	8.5 Omit unnecessary spaces
	8.6 Omit default values
	8.7 Take advantage of forms
	8.8 Limit the precision of real numbers
	8.9 Write parameters only when they change
	8.10 Don’t draw outside the crop box
	8.11 Consider target device resolution
	8.12 Share resources
	8.13 Store common Page attributes in the Pages obj...

	Optimizing Text
	9.1 Don’t produce unnecessary text objects
	9.2 Use automatic leading
	9.3 Take advantage of text spacing operators
	9.4 Don’t replace spaces between words
	9.5 Use the appropriate operator to draw text
	9.6 Use the appropriate operator to position text
	9.7 Remove text clipping
	9.8 Consider target device resolution

	Optimizing Graphics
	10.1 Use the appropriate color-setting operator
	10.2 Defer path painting until necessary
	10.3 Take advantage of the closepath operator
	10.4 Don’t close a path more than once
	10.5 Don’t draw zero-length lines
	10.6 Make sure drawing is needed
	10.7 Take advantage of rectangle and curve operato...
	10.8 Coalesce operations

	Optimizing Images
	11.1 Preprocess images
	11.2 Match image resolution to target device resol...
	11.3 Use the minimum number of bits per color 11.3...
	11.4 Take advantage of indexed color spaces
	11.5 Use the DeviceGray color space for monochrome...
	11.6 Use in-line images appropriately
	11.7 Don’t compress in-line images unnecessarily
	11.8 Choose the appropriate filters

	Clipping and Blends
	12.1 Clipping to a path
	12.2 Clipping to text
	12.3 Image masks
	12.4 Blends

	Example PDF Files
	A.1 Minimal PDF file
	A.2 Simple text string
	A.3 Simple graphics
	A.4 Pages tree
	A.5 Outline
	A.6 Updated file

	Summary of Page Marking Operators
	Predefined Font Encodings
	C.1 Predefined encodings sorted by character name
	C.2 Predefined encodings sorted by character code
	C.3 MacExpert encoding

	Implementation Limits
	Obtaining XUIDs and Technical Notes
	PDF Name Registry
	Compatibility
	G.1 Version numbers
	G.2 Viewer compatibility behavior

	Bibliography
	Colophon

